18 research outputs found

    Characterization of Improved Sweet Sorghum Genotypes for Biochemical Parameters, Sugar Yield and Its Attributes at Different Phenological Stages

    Get PDF
    Sweet sorghum is a multipurpose biofuel feedstock that offers grain for human consumption, fodder for livestock and ethanol for transportation purposes. The knowledge on sugar components at different phenological stages of crop growth and identification of appropriate stage of harvesting is critical for sweet sorghum commercialization and value chain sustenance. In this regard, sweet sorghum stalk yield, juice yield, Brix%, pH, sugars (sucrose, fructose and glucose) and their content were analyzed at three different phenological stages i.e. the dough stage, physiological maturity and post-physiological maturity. Variations in sugar content at different growth stages revealed that the sugar yield was high at physiological maturity, but highest at post-physiological maturity. Sucrose accounts for major fermentable sugar (about 70%) and it sharply increased by 146% from dough stage to postphysiological maturity. The variation in the monosaccharides content (glucose and fructose) is not statistically significant. This study points to the potential scope for widening the harvesting window of sweet sorghum, by cutting the stalks from physiological maturity stage and beyond up to 15 days (post-physiological maturity), thus helping the commercial distilleries by addressing a major impediment in sweet sorghum value chain. The entries SP 4495, SP 4511-3 and SPV 422 are suitable for harvesting in a wider window of time as the sugar levels are sustained at same level from physiological maturity to post-physiological maturity

    Root canal cleanliness after preparation with ultrasonic handpiece and hand instruments: An in vitro comparative scanning electron microscope study

    No full text
    Aim and objective: This study aims to compare the efficacy of root canal cleanliness using hand instrumentation and ultrasonic handpiece under the scanning electron microscope. Materials and Methods: Forty five central incisor were collected and access opening was done. cleaning and shaping of all the samples were done with three different groups 1- Ultrasonic file. group-2 with Hand files and Group-3 were prepared with Ultrasonic + hand files and debris and smear layer were evaluated with SEM . Results: Group 1 (ultrasonic) removed smear layer superiorly, followed by Group 3 (ultrasonic/hand instrumentation) and Group 2 (hand instrumentation), and Group 3 (ultrasonic/hand instrumentation) showed superior cleanliness of debris followed by Group 1 (ultrasonic) and Group 2 (hand instrumentation). Conclusion: (1) At the apical, middle, and coronal third level for removal of debris, Group 3 showed superior cleanliness followed by Group 1 and Group 2. (2) At the apical, middle, and coronal third level for removal of smear layer, Group 1 showed superior cleanliness followed by Group 3 and Group 2

    Not Available

    No full text
    Climate change analysis in southern Telangana region, Andhra Pradesh using LARS-WG modelWeather-generating models are widely used for study ing the climate change over longer periods. LARS-WG model was evaluated for southern Telangana region (Hayathnagar, Yacharam and Rajendranagar). A 30- year base weather data (1980–2010) was used to gene rate the long-term weather series from 2011 to 2060. The results of t and F tests at probability of 5% for comparing means and standard deviations of monthly rainfall and air temperatures indicated that the observed and predicted series for the base period are within acceptable limits. The statistics of model effi ciency indicates that mean monthly rainfall and daily air temperature are close to the predicted series over the base period. The model efficiency was highest in the case of Rajendranagar (98.75%). The root mean square error and sum of square error varied from 0.4 to 1.3 mm and 615 to 1745 mm respectively. The model predicted the maximum increase in average annual rainfall of 5.16% in 2030 and 9.5% in 2060 for Yacharam compared to Hayathnagar and Rajendrana gar over the normal annual rainfall of the base period (1980–2010). However, the model predicted increase in average seasonal rainfall for Hayathnagar (6.2% in 2030 and 8.8% in 2060). In case of air temperature, the model predicted increase in maximum temperature in the range 1–1.53% and 2.5% for 2030 and 2060 re spectively, for these locations whereas minimum tem perature decreased in the range 3.7–10.2% and 6.3– 11.7% respectively, for 2030 and 2060. The perform ance of LARS-WG model was ranked high with maximum model efficiency in all selected mandals of Ranga Reddy district in southern Telangana. This model can be replicated in other mandals of southern Telangana as climate characteristics of the present mandals are similar to other districts in the region.Not Availabl

    (1 E

    No full text
    corecore