686 research outputs found
The effect of intermittent hypoxic training on performance
This study aimed to verify whether the “live low, train high” approach is beneficial for endurance and/or anaerobic cycling performance. Sixteen well-trained athletes completed 90 min of endurance training (60-70% of heart rate reserve) followed by two 30-s all-out sprints (Wingate test), daily for 10 consecutive days. Nine subjects (IHT group) trained with an F₁O₂ set to produce arterial oxygen saturations of ~88% to ~82%, while 7 subjects (placebo group) trained while breathing a normal gas mixture (F₁O₂ = 0.21). Four performance tests were conducted at sea-level including a familiarisation and baseline trial, followed by repeat trials at 2 and 9 days post-intervention. Relative to the placebo group mean power during the 30-s Wingate test increased by 3.0% (95% Confidence Limits, CL ± 3.5%) 2 days, and 1.7% (± 3.8%) 9 days post-IHT. Changes in other performance variables (30-s peak power, 20-km mean power, 20-km oxygen cost) were unclear. During the time trial the IHT participants‟ blood lactate concentration, RER and SpO₂ relative to the placebo group, was substantially increased at 2 days post-intervention. The addition of IHT into the normal training programme of well-trained athletes produced worthwhile gains in 30-s sprint performance possibly through enhanced glycolysis.Lincoln University Research Fund, Sport and Recreation New Zealan
Alterations in cerebral blood flow and cerebrovascular reactivity during 14 days at 5050 m
Upon ascent to high altitude, cerebral blood flow (CBF) rises substantially before returning to sea-level values. The underlying mechanisms for these changes are unclear. We examined three hypotheses: (1) the balance of arterial blood gases upon arrival at and across 2 weeks of living at 5050 m will closely relate to changes in CBF; (2) CBF reactivity to steady-state changes in CO2 will be reduced following this 2 week acclimatisation period, and (3) reductions in CBF reactivity to CO2 will be reflected in an augmented ventilatory sensitivity to CO2. We measured arterial blood gases, middle cerebral artery blood flow velocity (MCAv, index of CBF) and ventilation () at rest and during steady-state hyperoxic hypercapnia (7% CO2) and voluntary hyperventilation (hypocapnia) at sea level and then again following 2–4, 7–9 and 12–15 days of living at 5050 m. Upon arrival at high altitude, resting MCAv was elevated (up 31 ± 31%; P < 0.01; vs. sea level), but returned to sea-level values within 7–9 days. Elevations in MCAv were strongly correlated (R2= 0.40) with the change in ratio (i.e. the collective tendency of arterial blood gases to cause CBF vasodilatation or constriction). Upon initial arrival and after 2 weeks at high altitude, cerebrovascular reactivity to hypercapnia was reduced (P < 0.05), whereas hypocapnic reactivity was enhanced (P < 0.05 vs. sea level). Ventilatory response to hypercapnia was elevated at days 2–4 (P < 0.05 vs. sea level, 4.01 ± 2.98 vs. 2.09 ± 1.32 l min−1 mmHg−1). These findings indicate that: (1) the balance of arterial blood gases accounts for a large part of the observed variability (∼40%) leading to changes in CBF at high altitude; (2) cerebrovascular reactivity to hypercapnia and hypocapnia is differentially affected by high-altitude exposure and remains distorted during partial acclimatisation, and (3) alterations in cerebrovascular reactivity to CO2 may also affect ventilatory sensitivity
The impact of hypoxaemia on vascular function in lowlanders and high altitude indigenous populations
Off the Couch and Onto the Streets: Toward an Ethnographic Psychoanalysis
Psychoanalysis has much to gain by incorporating ethnographic methods into its repertoire. Recent works in ethnographic psychoanalysis demonstrate how psychoanalysis stands to function better as both community intervention and participatory action research. This article describes the historical convergence between psychoanalysis and cultural anthropology and situates ethnographic psychoanalysis within interdisciplinary theory and practice
Influence of myocardial oxygen demand on the coronary vascular response to arterial blood gas changes in humans
It remains unclear if the human coronary vasculature is inherently sensitive to changes in arterial PO2 and PCO2 or if coronary vascular responses are the result of concomitant increases in myocardial O2 consumption/demand (MVO2). We hypothesized that the coronary vascular response to PO2 and PCO2 would be attenuated in healthy men when MVO2 was attenuated with β1-adrenergic receptor blockade. Healthy men (n=11; age: 25 {plus minus} 1 years) received intravenous esmolol (β1-adrenergic receptor antagonist) or volume-matched saline in a double-blind, randomized, crossover study, and were exposed to poikilocapnic hypoxia, isocapnic hypoxia, and hypercapnic hypoxia. Measurements made at baseline and following 5-min of steady state at each gas manipulation included left anterior descending coronary blood velocity (LADV; Doppler echocardiography), heart rate and arterial blood pressure. LADV values at the end of each hypoxic condition were compared between esmolol and placebo. Rate pressure product (RPP) and left-ventricular mechanical energy (MELV) were calculated as indices of MVO2. All gas manipulations augmented RPP, MELV, and LADV but only RPP and MELV were attenuated (4-18%) following β1-adrenergic receptor blockade (P<0.05). Despite attenuated RPP and MELV responses, β1-adrenergic receptor blockade did not attenuate the mean LADV vasodilatory response when compared to placebo during poikilocapnic hypoxia (29.4{plus minus}2.2 vs. 27.3{plus minus}1.6 cm/s) and isocapnic hypoxia (29.5{plus minus}1.5 vs. 30.3{plus minus}2.2 cm/s). Hypercapnic hypoxia elicited a feed-forward coronary dilation that was blocked by β1-adrenergic receptor blockade. These results indicate a direct influence of arterial PO2 on coronary vascular regulation that is independent of MVO2
The overlooked significance of plasma volume for successful adaptation to high altitude in Sherpa and Andean natives
In contrast to Andean natives, high altitude Tibetans present with a lower hemoglobin concentration that correlates with reproductive success and exercise capacity. Decades of physiological and genomic research have assumed that the lower hemoglobin concentration in Himalayan natives results from a blunted erythropoietic response to hypoxia (i.e. no increase in total hemoglobin mass). In contrast, herein we test the hypothesis that the lower hemoglobin concentration is the result of greater plasma volume, rather than an absence of increased hemoglobin production. We assessed hemoglobin mass, plasma volume and blood volume in lowlanders at sea level, lowlanders acclimatized to high altitude, Himalayan Sherpa and Andean Quechua, and explored the functional relevance of volumetric hematological measures to exercise capacity. Hemoglobin mass was highest in Andeans, but also elevated in Sherpa compared to lowlanders. Sherpa demonstrated a larger plasma volume than Andeans, resulting in a comparable total blood volume at a lower hemoglobin concentration. Hemoglobin mass was positively related to exercise capacity in lowlanders at sea level and Sherpa at high altitude, but not in Andean natives. Collectively, our findings demonstrate a unique adaptation in Sherpa that reorientates attention away from hemoglobin concentration and towards a paradigm where hemoglobin mass and plasma volume may represent phenotypes with adaptive significance at high altitude
Common Scaling Patterns in Intertrade Times of U. S. Stocks
We analyze the sequence of time intervals between consecutive stock trades of
thirty companies representing eight sectors of the U. S. economy over a period
of four years. For all companies we find that: (i) the probability density
function of intertrade times may be fit by a Weibull distribution; (ii) when
appropriately rescaled the probability densities of all companies collapse onto
a single curve implying a universal functional form; (iii) the intertrade times
exhibit power-law correlated behavior within a trading day and a consistently
greater degree of correlation over larger time scales, in agreement with the
correlation behavior of the absolute price returns for the corresponding
company, and (iv) the magnitude series of intertrade time increments is
characterized by long-range power-law correlations suggesting the presence of
nonlinear features in the trading dynamics, while the sign series is
anti-correlated at small scales. Our results suggest that independent of
industry sector, market capitalization and average level of trading activity,
the series of intertrade times exhibit possibly universal scaling patterns,
which may relate to a common mechanism underlying the trading dynamics of
diverse companies. Further, our observation of long-range power-law
correlations and a parallel with the crossover in the scaling of absolute price
returns for each individual stock, support the hypothesis that the dynamics of
transaction times may play a role in the process of price formation.Comment: 8 pages, 5 figures. Presented at The Second Nikkei Econophysics
Workshop, Tokyo, 11-14 Nov. 2002. A subset appears in "The Application of
Econophysics: Proceedings of the Second Nikkei Econophysics Symposium",
editor H. Takayasu (Springer-Verlag, Tokyo, 2003) pp.51-57. Submitted to
Phys. Rev. E on 25 June 200
Chemoreceptor responsiveness at sea level does not predict the pulmonary pressure response to high altitude
The hypoxic ventilatory response (HVR) at sea level (SL) is moderately predictive of the
change in pulmonary artery systolic pressure (PASP) to acute normobaric hypoxia. However, because of
progressive changes in the chemoreflex control of breathing and acid-base balance at high altitude (HA),
HVR at SL may not predict PASP at HA. We hypothesized that resting peripheral oxyhemoglobin
saturation (SpO2) at HA would correlate better than HVR at SL to PASP at HA. In 20 participants at SL,
we measured normobaric, isocapnic HVR (L/min·-%SpO2
-1) and resting PASP using echocardiography.
Both resting SpO2 and PASP measures were repeated on day 2 (n=10), days 4-8 (n=12), and 2-3 weeks
(n=8) after arrival at 5050m. These data were also collected at 5050m on life-long HA residents (Sherpa;
n=21). Compared to SL, SpO2 decreased from 98.6 to 80.5% (P<0.001), while PASP increased from
21.7 to 34.0mmHg (P<0.001) after 2-3 weeks at 5050m. Isocapnic HVR at SL was not related to SpO2
or PASP at any time point at 5050m (all P>0.05). Sherpa had lower PASP (P<0.01) than lowlanders on
days 4-8 despite similar SpO2. Upon correction for hematocrit, Sherpa PASP was not different from
lowlanders at SL, but lower than lowlanders at all HA time points. At 5050m, whilst SpO2 was not
related to PASP in lowlanders at any point (all R2=0.50), there was a weak relationship in the
Sherpa (R2=0.16; P=0.07). We conclude that neither HVR at SL nor resting SpO2 at HA correlates with
elevations in PASP at HA
Global REACH: Assessment of brady-arrhythmias in Andeans and Lowlanders during apnea at 4330m
BACKGROUND: Ascent to altitude increases the prevalence of arrhythmogenesis in low-altitude dwelling populations (Lowlanders). High altitude populations (ie. Nepalese Sherpa) may have arrhythmias resistant adaptations that prevent arrhythmogenesis at altitude, though this has not been documented in other High altitude groups, including those diagnosed with chronic mountain sickness (CMS). We investigated whether healthy (CMS-) and CMS afflicted (CMS+) Andeans exhibit cardiac arrhythmias under acute apneic stress at altitude. METHODS AND RESULTS: Electrocardiograms (lead II) were collected in CMS- (N=9), CMS+ (N=8), and Lowlanders (N= 13) following several days at 4330m (Cerro de Pasco, Peru). ECG rhythm and HR were assessed at both rest and during maximal volitional apnea (End-Expiratory [EXP]). Both CMS- and CMS+ had similar basal HR (69 ± 8 beats/min vs. 62 ± 11 beats/min), while basal HR was higher in Lowlanders (77 ± 18 beats/min; P<0.05 versus CMS+). Apnea elicited significant bradycardia (nadir -32 ± 15 beats/min; P<0.01) and the development of arrhythmias in 8/13 Lowlanders (junctional rhythm, 3° atrio-venticular block, sinus pause). HR was preserved was prior to volitional breakpoint in both CMS- (nadir -6 ± 1 beat/min) and CMS+ (1 ±12 beats/min), with 2/17 Andeans developing arrhythmias ( 1 CMS+ and 1 CMS-; both Premature Atrial Contraction) prior to breakpoint. CONCLUSIONS: Andeans showed an absence of arrhythmias and preserved HR response to volitional apnea at altitude, demonstrating that potential cardio-resistant adaptations to arrhythmogenesis exist across permanent HA populations. Acclimatized Lowlanders have further demonstrated an increased prevalence of arrhythmias at altitude
Impact of transient hypotension on regional cerebral blood flow in humans
Abstract We examined the impact of progressive hypotension with and without hypocapnia on regional extracranial cerebral blood flow (CBF) and intracranial velocities. Participants underwent progressive lower-body negative pressure (LBNP) until pre-syncope to inflict hypotension. End-tidal carbon dioxide was clamped at baseline levels (isocapnic trial) or uncontrolled (poikilocapnic trial). Middle cerebral artery (MCA) and posterior cerebral artery (PCA) blood velocities (transcranial Doppler; TCD), heart rate, blood pressure and end-tidal carbon dioxide were obtained continuously. Measurements of internal carotid artery (ICA) and vertebral artery (VA) blood flow (ICA BF and VA BF respectively) were also obtained. Overall, blood pressure was reduced by ∼20 % from baseline in both trials (P < 0.001). In the isocapnic trial, end-tidal carbon dioxide was successfully clamped at baseline with hypotension, whereas in the poikilocapnic trial it was reduced by 11.1 mmHg (P < 0.001) with hypotension. The decline in the ICA BF with hypotension was comparable between trials (−139 + − 82 ml; ∼30 %; P < 0.0001); however, the decline in the VA BF was −28 + − 22 ml/min (∼21 %) greater in the poikilocapnic trial compared with the isocapnic trial (P = 0.002). Regardless of trial, the blood flow reductions in ICA (−26 + − 14 %) and VA (−27 + − 14 %) were greater than the decline in MCA (−21 + − 15 %) and PCA (−19 + − 10 %) velocities respectively (P 0.01). Significant reductions in the diameter of both the ICA (∼5 %) and the VA (∼7 %) contributed to the decline in cerebral perfusion with systemic hypotension, independent of hypocapnia. In summary, our findings indicate that blood flow in the VA, unlike the ICA, is sensitive to changes hypotension and hypocapnia. We show for the first time that the decline in global CBF with hypotension is influenced by arterial constriction in the ICA and VA. Additionally, our findings suggest TCD measures of blood flow velocity may modestly underestimate changes in CBF during hypotension with and without hypocapnia, particularly in the posterior circulation
- …