561 research outputs found
Stripe formation in horizontally oscillating granular suspensions
We present the results of an experimental study of pattern formation in
horizontally oscillating granular suspensions. Starting from a homogeneous
state, the suspension turns into a striped pattern within a specific range of
frequencies and amplitudes of oscillation. We observe an initial development of
layered structures perpendicular to the vibration direction and a gradual
coarsening of the stripes. However, both processes gradually slow down and
eventually saturate. The probability distribution of the stripe width
approaches a nonmonotonic steady-state form which can be approximated by a
Poisson distribution. We observe similar structures in MD simulations of soft
spherical particles coupled to the motion of the surrounding fluid.Comment: 7 pages, 8 figures, to appear in Europhys. Lett. (2014
Recommended from our members
Biporous Metal-Organic Framework with Tunable CO2/CH4 Separation Performance Facilitated by Intrinsic Flexibility.
In this work, we report the synthesis of SION-8, a novel metal-organic framework (MOF) based on Ca(II) and a tetracarboxylate ligand TBAPy4- endowed with two chemically distinct types of pores characterized by their hydrophobic and hydrophilic properties. By altering the activation conditions, we gained access to two bulk materials: the fully activated SION-8F and the partially activated SION-8P with exclusively the hydrophobic pores activated. SION-8P shows high affinity for both CO2 ( Qst = 28.4 kJ/mol) and CH4 ( Qst = 21.4 kJ/mol), while upon full activation, the difference in affinity for CO2 ( Qst = 23.4 kJ/mol) and CH4 ( Qst = 16.0 kJ/mol) is more pronounced. The intrinsic flexibility of both materials results in complex adsorption behavior and greater adsorption of gas molecules than if the materials were rigid. Their CO2/CH4 separation performance was tested in fixed-bed breakthrough experiments using binary gas mixtures of different compositions and rationalized in terms of molecular interactions. SION-8F showed a 40-160% increase (depending on the temperature and the gas mixture composition probed) of the CO2/CH4 dynamic breakthrough selectivity compared to SION-8P, demonstrating the possibility to rationally tune the separation performance of a single MOF by manipulating the stepwise activation made possible by the MOF's biporous nature
Modelling the evaporation of nanoparticle suspensions from heterogeneous surfaces
We present a Monte Carlo (MC) grid-based model for the drying of drops of a
nanoparticle suspension upon a heterogeneous surface. The model consists of a
generalised lattice-gas in which the interaction parameters in the Hamiltonian
can be varied to model different properties of the materials involved. We show
how to choose correctly the interactions, to minimise the effects of the
underlying grid so that hemispherical droplets form. We also include the
effects of surface roughness to examine the effects of contact-line pinning on
the dynamics. When there is a `lid' above the system, which prevents
evaporation, equilibrium drops form on the surface, which we use to determine
the contact angle and how it varies as the parameters of the model are changed.
This enables us to relate the interaction parameters to the materials used in
applications. The model has also been applied to drying on heterogeneous
surfaces, in particular to the case where the suspension is deposited on a
surface consisting of a pair of hydrophilic conducting metal surfaces that are
either side of a band of hydrophobic insulating polymer. This situation occurs
when using inkjet printing to manufacture electrical connections between the
metallic parts of the surface. The process is not always without problems,
since the liquid can dewet from the hydrophobic part of the surface, breaking
the bridge before the drying process is complete. The MC model reproduces the
observed dewetting, allowing the parameters to be varied so that the conditions
for the best connection can be established. We show that if the hydrophobic
portion of the surface is located at a step below the height of the
neighbouring metal, the chance of dewetting of the liquid during the drying
process is significantly reduced.Comment: 14 pages, 14 figure
Thermal inactivation and conformational lock studies on glucose oxidase
In this study, the dissociative thermal inactivation
and conformational lock theories are applied for the
homodimeric enzyme glucose oxidase (GOD) in order to
analyze its structure. For this purpose, the rate of activity
reduction of glucose oxidase is studied at various temperatures
using b-D-glucose as the substrate by incubation of
enzyme at various temperatures in the wide range between
40 and 70 �C using UV–Vis spectrophotometry. It was
observed that in the two ranges of temperatures, the
enzyme has two different forms. In relatively low temperatures,
the enzyme is in its dimeric state and has normal
activity. In high temperatures, the activity almost disappears
and it aggregates. The above achievements are confirmed
by dynamic light scattering. The experimental
parameter ‘‘n’’ as the obvious number of conformational
locks at the dimer interface of glucose oxidase is obtained
by kinetic data, and the value is near to two. To confirm the
above results, the X-ray crystallography structure of the
enzyme, GOD (pdb, 1gal), was also studied. The secondary
and tertiary structures of the enzyme to track the thermal
inactivation were studied by circular dichroism and
fluorescence spectroscopy, respectively. We proposed a
mechanism model for thermal inactivation of GOD based
on the absence of the monomeric form of the enzyme by
circular dichroism and fluorescence spectroscopy
The correlation of RNase A enzymatic activity with the changes in the distance between Nepsilon2-His12 and N delta1-His119 upon addition of stabilizing and destabilizing salts.
The effect of stabilizing and destabilizing salts on the catalytic behavior of ribonuclease A (RNase A) was investigated at pH 7.5 and 25 degrees C, using spectrophotometric, viscometric and molecular dynamic methods. The changes in the distance between N(epsilon2) of His(12) and N(delta1) of His(119) at the catalytic center of RNase A upon the addition of sodium sulfate, sodium hydrogen sulfate and sodium thiocyanate were evaluated by molecular dynamic methods. The compactness and expansion in terms of Stokes radius of RNase A upon the addition of sulfate ions as kosmotropic salts, and thiocyanate ion as a chaotropic salt, were estimated by viscometric measurements. Enzyme activity was measured using cytidine 2', 3'-cyclic monophosphate as a substrate. The results from the measurements of distances between N(epsilon2) of His(12) and N(delta1) of His(119) and Stokes radius suggest (i) that the presence of sulfate ions decreases the distance between the catalytic His residues and increases the globular compactness, and (ii) that there is an expansion of the enzyme surface as well as elongation of the catalytic center in the presence of thiocyanate ion. These findings are in agreement with activity measurements
The calcium-free form of atorvastatin inhibits amyloid-β(1–42) aggregation in vitro
Alzheimer's disease is characterized by the presence of extraneuronal amyloid plaques composed of amyloid-beta (A beta) fibrillar aggregates in the brains of patients. In mouse models, it has previously been shown that atorvastatin (Ator), a cholesterol-lowering drug, has some reducing effect on the production of cerebral A beta. A meta-analysis on humans showed moderate effects in the short term but no improvement in the Alzheimer's Disease Assessment Scale-Cognitive Subscale behavioral test. Here, we explore a potential direct effect of Ator on A beta 42 aggregation. Using NMR-based monomer consumption assays and CD spectroscopy, we observed a promoting effect of Ator in its original form (Ator-calcium) on A beta 42 aggregation, as expected because of the presence of calcium ions. The effect was reversed when applying a CaCO3- based calcium ion scavenging method, which was validated by the aforementioned methods as well as thioflavin-T fluorescence assays and transmission electron microscopy. We found that the aggregation was inhibited significantly when the concentration of calcium-free Ator exceeded that of A beta by at least a factor of 2. The H-1-N-15 heteronuclear single quantum correlation and saturation-transfer difference NMR data suggest that calcium-free Ator exerts its effect through interaction with the (KLVF19)-K-16 binding site on the A beta peptide via its aromatic rings as well as hydroxyl and methyl groups. On the other hand, molecular dynamics simulations confirmed that the increasing concentration of Ator is necessary for the inhibition of the conformational transition of A beta from an alpha-helix-dominant to a beta-sheet-dominant structure
SELFIES and the future of molecular string representations
Artificial intelligence (AI) and machine learning (ML) are expanding in popularity for broad applications to challenging tasks in chemistry and materials science. Examples include the prediction of properties, the discovery of new reaction pathways, or the design of new molecules. The machine needs to read and write fluently in a chemical language for each of these tasks. Strings are a common tool to represent molecular graphs, and the most popular molecular string representation, Smiles, has powered cheminformatics since the late 1980s. However, in the context of AI and ML in chemistry, Smiles has several shortcomings—most pertinently, most combinations of symbols lead to invalid results with no valid chemical interpretation. To overcome this issue, a new language for molecules was introduced in 2020 that guarantees 100% robustness: SELF-referencing embedded string (Selfies). Selfies has since simplified and enabled numerous new applications in chemistry. In this perspective, we look to the future and discuss molecular string representations, along with their respective opportunities and challenges. We propose 16 concrete future projects for robust molecular representations. These involve the extension toward new chemical domains, exciting questions at the interface of AI and robust languages, and interpretability for both humans and machines. We hope that these proposals will inspire several follow-up works exploiting the full potential of molecular string representations for the future of AI in chemistry and materials science
Securing combined Fog-to-Cloud systems: challenges and directions
Nowadays, fog computing is emerged for providing computational power closer to the users. Fog computing brings real-time processing, lowlatency, geo-distributed and etc. Although, fog computing do not come to compete cloud computing, it comes to collaborate. Recently, Fog-To-Cloud (F2C) continuum system is introduced to provide hierarchical computing system and facilitates fog-cloud collaboration. This F2C continuum system might encounter security issues and challenges due to their hierarchical and distributed nature. In this paper, we analyze attacks in different layer of F2C system and identify most potential security requirements and challenges for the F2C continuum system. Finally, we introduce the most remarkable efforts and trends for bringing secure F2C system.This work is supported by the H2020 projects mF2C (730929). It is also supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund both under contract RTI2018-094532-B-100.Peer ReviewedPostprint (author's final draft
- …