1,134 research outputs found
Bifurcation from relative periodic solutions
Published versio
A comparison between the MEXE and Pippard's methods of assessing the load carrying capacity of masonry arch bridges
The Military Engineering eXperimental Establishment (MEXE) method is a long established system of masonry arch load carrying capacity assessment. It has been subject to review in recent years and some shortcomings have been identified. There is now growing consensus that the current version of MEXE overestimates the load carrying capacity of short span bridges, but for spans over 12m it becomes increasingly conservative. In this paper Pippardâs elastic method and the MEXE method are used to investigate the significance of factors such as fill cover, ring thickness and effective width of arch barrel, and their effect upon the load-carrying capacity predictions in short and long span arches. Conclusions are drawn which establish directions of new research and offer guidance to assessors of short and long span masonry arch bridges
Interplanetary Trajectory Optimization with Powerlimited Propulsion Systems
A trajectory-optimization process is described in which the optimum thrust equations are derived using the calculus of variations. The magnitude of the thrust is constrained within an upper and a lower bound, but the thrust direction is arbitrary. This formulation allows both the constant-thrust program and the variable-thrust program to be considered. For the constant-thrust program, certain propulsion-system parameters are optimized for maximum final vehicle mass. This theory has been used to study interplanetary missions to Venus and Mars using a power-limited propulsion system. Both one-way and round trip rendezvous trajectories are considered. The analysis employs a two-body inverse-square force-field model of three dimensions. An iterative routine used to solve the two-point boundary-value problem is described in the Appendix
Spatially Resolved Stellar Populations of Eight GOODS-South AGN at z~1
We present a pilot study of the stellar populations of 8 AGN hosts at z~1 and
compare to (1) lower redshift samples and (2) a sample of nonactive galaxies of
similar redshift. We utilize K' images in the GOODS South field obtained with
the laser guide star adaptive optics (LGSAO) system at Keck Observatory. We
combine this K' data with B, V, i, and z imaging from the ACS on HST to give
multi-color photometry at a matched spatial resolution better than 100 mas in
all bands. The hosts harbor AGN as inferred from their high X-ray luminosities
(L_X > 10^42 ergs/s) or mid-IR colors. We find a correlation between the
presence of younger stellar populations and the strength of the AGN, as
measured with [OIII] line luminosity or X-ray (2-10 keV) luminosity. This
finding is consistent with similar studies at lower redshift. Of the three Type
II galaxies, two are disk galaxies and one is of irregular type, while in the
Type I sample there only one disk-like source and four sources with smooth,
elliptical/spheroidal morphologies. In addition, the mid-IR SEDs of the strong
Type II AGN indicate that they are excited to LIRG (Luminous InfraRed Galaxy)
status via galactic starbursting, while the strong Type I AGN are excited to
LIRG status via hot dust surrounding the central AGN. This supports the notion
that the obscured nature of Type II AGN at z~1 is connected with global
starbursting and that they may be extincted by kpc-scale dusty features that
are byproducts of this starbursting.Comment: 56 pages, 39 figures, accepted to A
Optical Morphology Evolution of Infrared Luminous Galaxies in GOODS-N
We combine optical morphologies and photometry from HST, redshifts from Keck,
and mid-infrared luminosities from Spitzer for an optically selected sample
of~800 galaxies in GOODS-N to track morphology evolution of infrared luminous
galaxies (LIRGs) since redshift z=1. We find a 50% decline in the number of
LIRGs from z~1 to lower redshift, in agreement with previous studies. In
addition, there is evidence for a morphological evolution of the populations of
LIRGs. Above z=0.5, roughly half of all LIRGs are spiral, the
peculiar/irregular to spiral ratio is ~0.7, and both classes span a similar
range of L_{IR} and M_B. At low-z, spirals account for one-third of LIRGs, the
peculiar to spiral fraction rises to 1.3, and for a given M_B spirals tend to
have lower IR luminosity than peculiars. Only a few percent of LIRGs at any
redshift are red early-type galaxies. For blue galaxies (U-B < 0.2), M_B is
well correlated with log(L_{IR}) with an RMS scatter (about a bivariate linear
fit) of ~0.25 dex in IR luminosity. Among blue galaxies that are brighter than
M_B = -21, 75% are LIRGs, regardless of redshift. These results can be
explained by a scenario in which at high-z, most large spirals experience an
elevated star formation rate as LIRGs. Gas consumption results in a decline of
LIRGs, especially in spirals, to lower redshifts.Comment: 6 pages, 2 figures, accepted ApJ
Radius Dependent Luminosity Evolution of Blue Galaxies in GOODS-N
We examine the radius-luminosity (R-L) relation for blue galaxies in the Team
Keck Redshift Survey (TKRS) of GOODS-N. We compare with a volume-limited, Sloan
Digital Sky Survey sample and find that the R-L relation has evolved to lower
surface brightness since z=1. Based on the detection limits of GOODS this can
not be explained by incompleteness in low surface-brightness galaxies. Number
density arguments rule out a pure radius evolution. It can be explained by a
radius dependent decline in B-band luminosity with time. Assuming a linear
shift in M_B with z, we use a maximum likelihood method to quantify the
evolution. Under these assumptions, large (R_{1/2} > 5 kpc), and intermediate
sized (3 < R_{1/2} < 5 kpc) galaxies, have experienced Delta M_B =1.53
(-0.10,+0.13) and 1.65 (-0.18, +0.08) magnitudes of dimming since z=1. A simple
exponential decline in star formation with an e-folding time of 3 Gyr can
result in this amount of dimming. Meanwhile, small galaxies, or some subset
thereof, have experienced more evolution, 2.55 (+/- 0.38) magnitudes. This
factor of ten decline in luminosity can be explained by sub-samples of
starbursting dwarf systems that fade rapidly, coupled with a decline in burst
strength or frequency. Samples of bursting, luminous, blue, compact galaxies at
intermediate redshifts have been identified by various previous studies. If
there has been some growth in galaxy size with time, these measurements are
upper limits on luminosity fading.Comment: 34 Total pages, 15 Written pages, 19 pages of Data Table, 13 Figures,
accepted for publication in Ap
Episodic Tremor and Slip in the Pacific Northwest
Every 14 months the Pacific Northwest experiences slow slip on a fault that is the equivalent of about a magnitude 6.5 earthquake. While a typical earthquake of this magnitude happens in less than 10 seconds, the duration of these slip events is two to several weeks. The most recent event occurred from January 14 through February 1, 2007
Spatially Resolved Stellar Populations of Eight GOODS-South Active Galactic Nuclei at z ~ 1
We present a pilot study of the stellar populations of eight active galactic nucleus (AGN) hosts at z ~ 1 and compare with (1) lower redshift samples and (2) a sample of nonactive galaxies of similar redshift. We utilize K' images in the Great Observatories Origins Deep Survey South field obtained with the laser guide star adaptive optics system at Keck Observatory. We combine these K' data with B, V, i, and z imaging from the Advanced Camera for Surveys on Hubble Space Telescope to give multicolor photometry at a matched spatial resolution better than 100 mas in all bands. The hosts harbor AGNs as inferred from their high X-ray luminosities (LX > 10^42 erg s^â1) or mid-IR colors. We find a correlation between the presence of younger stellar populations and the strength of the AGN, as measured with [O III] line luminosity or X-ray (2-10 keV) luminosity. This finding is consistent with similar studies at lower redshift. Of the three Type II galaxies, two are disk galaxies and one is of irregular type, while in the Type I sample there are only one disk-like source and four sources with smooth, elliptical/spheroidal morphologies. In addition, the mid-IR spectral energy distributions of the strong Type II AGNs indicate that they are excited to Luminous InfraRed Galaxy (LIRG) status via galactic starbursting, while the strong Type I AGNs are excited to LIRG status via hot dust surrounding the central AGN. This supports the notion that the obscured nature of Type II AGNs at z ~ 1 is connected with global starbursting and that they may be extincted by kpc-scale dusty features that are by-products of this starbursting
The Asymptotic Giant Branch and the Tip of the Red Giant Branch as Probes of Star Formation History: The Nearby Dwarf Irregular Galaxy KKH 98
We investigate the utility of the asymptotic giant branch (AGB) and the red
giant branch (RGB) as probes of the star formation history (SFH) of the nearby
(D=2.5 Mpc) dwarf irregular galaxy, KKH 98. Near-infrared (IR) Keck Laser Guide
Star Adaptive Optics (AO) images resolve 592 IR bright stars reaching over 1
magnitude below the Tip of the Red Giant Branch. Significantly deeper optical
(F475W and F814W) Hubble Space Telescope images of the same field contain over
2500 stars, reaching to the Red Clump and the Main Sequence turn-off for 0.5
Gyr old populations. Compared to the optical color magnitude diagram (CMD), the
near-IR CMD shows significantly tighter AGB sequences, providing a good probe
of the intermediate age (0.5 - 5 Gyr) populations. We match observed CMDs with
stellar evolution models to recover the SFH of KKH 98. On average, the galaxy
has experienced relatively constant low-level star formation (5 x 10^-4 Mo
yr^-1) for much of cosmic time. Except for the youngest main sequence
populations (age < 0.1 Gyr), which are typically fainter than the AO data flux
limit, the SFH estimated from the the 592 IR bright stars is a reasonable match
to that derived from the much larger optical data set. Differences between the
optical and IR derived SFHs for 0.1 - 1 Gyr populations suggest that current
stellar evolution models may be over-producing the AGB by as much as a factor
of three in this galaxy. At the depth of the AO data, the IR luminous stars are
not crowded. Therefore these techniques can potentially be used to determine
the stellar populations of galaxies at significantly further distances.Comment: 15 pages, 14 figs, accepted for publication in Ap
- âŠ