1,676 research outputs found

    Hadronic multiparticle production in extensive air showers and accelerator experiments

    Get PDF
    Using CORSIKA for simulating extensive air showers, we study the relation between the shower characteristics and features of hadronic multiparticle production at low energies. We report about investigations of typical energies and phase space regions of secondary particles which are important for muon production in extensive air showers. Possibilities to measure relevant quantities of hadron production in existing and planned accelerator experiments are discussed.Comment: To be published in Proceedings of ICRC 2005, 29th International Cosmic Ray Conferenc

    Three-dimensional modeling of the HI kinematics of NGC 2915

    Full text link
    The nearby blue compact dwarf, NGC 2915, has its stellar disc embedded in a large, extended (~ 22 B-band scale-lengths) HI disc. New high-resolution HI synthesis observations of NGC 2915 have been obtained with the Australia Telescope Compact Array. These observations provide evidence of extremely complex HI kinematics within the immediate vicinity of the galaxy's star-forming core. We identify and quantify double-peaked HI line profiles near the centre of the galaxy and show that the HI energetics can be accounted for by the mechanical energy output of the central high-mass stellar population within time-scales of 10^6-10^7 yr. Full three-dimensional models of the HI data cube are generated and compared to the observations to test various physical scenarios associated with the high-mass star-forming core of NGC 2915. Purely circular HI kinematics are ruled out together with the possibility of a high-velocity-dispersion inter-stellar medium at inner radii. Radial velocities of ~ 30 km/s are required to describe the central-most HI kinematics of the system. Our results lend themselves to the simple physical scenario in which the young stellar core of the galaxy expels the gas outwards from the centre of the disc, thereby creating a central HI under-density. These kinematics should be thought of as being linked to a central HI outflow rather than a large-scale galactic blow-out or wind.Comment: 11 pages, 6 figures, accepted for publication in MNRA

    Starbursts and Star Clusters in the Ultraviolet

    Get PDF
    Hubble Space Telescope ultraviolet (UV) images of nine starburst galaxies reveal them to be highly irregular, even after excluding compact sources (clusters and resolved stars). Most (7/9) are found to have a similar intrinsic effective surface brightnesses, suggesting that a negative feedback mechanism is setting an upper limit to the star formation rate per unit area. All starbursts in our sample contain UV bright star clusters indicating that cluster formation is an important mode of star formation in starbursts. On average about 20% of the UV luminosity comes from these clusters. The brightest clusters, or super star clusters (SSC), are preferentially found at the very heart of starbursts. The size of the nearest SSCs are consistent with those of Galactic globular clusters. The luminosity function of SSCs is well represented by a power law with a slope alpha ~ -2. There is a strong correlation between the far infrared excess and the UV spectral slope. The correlation is well modeled by a geometry where much of their dust is in a foreground screen near to the starburst, but not by a geometry of well mixed stars and dust.Comment: 47 pages, text only, LaTeX with aaspp.sty (version 3.0), compressed postscript figures available at ftp://eta.pha.jhu.edu/RecentPublications/meurer

    FUSE Observations of Outflowing OVI in the Dwarf Starburst Galaxy NGC1705

    Get PDF
    We report FUSE far-UV spectroscopy of the prototypical dwarf starburst galaxy NGC 1705. These data allow us for the first time to probe the coronal-phase gas (T = 10E5 to 10E6 K) that may dominate the radiative cooling of the supernova-heated ISM and thereby determine the dynamical evolution of starburst-driven outflows. We detect a broad (100 km/s) and blueshifted (by 80 km/s) OVI absorption-line arising in the previously-known galactic outflow. The properties of the OVI absorption are inconsistent with the standard superbubble model in which this gas arises in a conductive interface inside the outer shell. We show that the superbubble in NGC 1705 is blowing out of the galaxy ISM. During blow-out, coronal-phase gas can be created by hydrodynamical mixing as hot gas rushes out through fissures in the fragmenting shell of cool gas. As the coronal gas cools radiatively, it can naturally produce the observed OVI column density and outflow speed. The OVI data show that the cooling rate in the coronal-phase gas is less than about 10% of the supernova heating rate. Since the X-ray luminosity from hotter gas is even smaller, we conclude that radiative losses are insignificant. The outflow should be able to vent its metals and kinetic energy out of the galaxy. This process has potentially important implications for the evolution of dwarf galaxies and the IGM.Comment: ApJ (in press

    On the Escape of Ionizing Radiation from Starbursts

    Full text link
    Far-ultraviolet spectra obtained with FUSEFUSE show that the strong CIIλCII\lambda1036 interstellar absorption-line is essentially black in five of the UV-brightest local starburst galaxies. Since the opacity of the neutral ISM below the Lyman-edge will be significantly larger than in the CIICII line, these data provide strong constraints on the escape of ionizing radiation from these starbursts. Interpreted as a a uniform absorbing slab, the implied optical depth at the Lyman edge is huge (τ0102\tau_0 \geq 10^2). Alternatively, the areal covering factor of opaque material is typically \geq 94%. Thus, the fraction of ionizing stellar photons that escape the ISM of each galaxy is small: our conservative estimates typically yield fesc6f_{esc} \leq 6%. Inclusion of extinction due to dust will further decrease fescf_{esc}. An analogous analysis of the rest-UV spectrum of the star-forming galaxy MS1512CB58MS 1512-CB58 at zz =2.7 leads to similar constraints on fescf_{esc}. These new results agree with the constraints provided by direct observations below the Lyman edge in a few other local starbursts. However, they differ from the recently reported properties of star-forming galaxies at zz \geq 3. We assess the idea that the strong galactic winds seen in many powerful starbursts clear channels through their neutral ISM. We show empirically that such outflows may be a necessary - but not sufficient - part of the process for creating a relatively porous ISM. We note that observations will soon document the cosmic evolution in the contribution of star-forming galaxies to the metagalactic ionizing background, with important implications for the evolution of the IGM.Comment: 17 pages; ApJ, in pres
    corecore