1,676 research outputs found
Hadronic multiparticle production in extensive air showers and accelerator experiments
Using CORSIKA for simulating extensive air showers, we study the relation
between the shower characteristics and features of hadronic multiparticle
production at low energies. We report about investigations of typical energies
and phase space regions of secondary particles which are important for muon
production in extensive air showers. Possibilities to measure relevant
quantities of hadron production in existing and planned accelerator experiments
are discussed.Comment: To be published in Proceedings of ICRC 2005, 29th International
Cosmic Ray Conferenc
Three-dimensional modeling of the HI kinematics of NGC 2915
The nearby blue compact dwarf, NGC 2915, has its stellar disc embedded in a
large, extended (~ 22 B-band scale-lengths) HI disc. New high-resolution HI
synthesis observations of NGC 2915 have been obtained with the Australia
Telescope Compact Array. These observations provide evidence of extremely
complex HI kinematics within the immediate vicinity of the galaxy's
star-forming core. We identify and quantify double-peaked HI line profiles near
the centre of the galaxy and show that the HI energetics can be accounted for
by the mechanical energy output of the central high-mass stellar population
within time-scales of 10^6-10^7 yr. Full three-dimensional models of the HI
data cube are generated and compared to the observations to test various
physical scenarios associated with the high-mass star-forming core of NGC 2915.
Purely circular HI kinematics are ruled out together with the possibility of a
high-velocity-dispersion inter-stellar medium at inner radii. Radial velocities
of ~ 30 km/s are required to describe the central-most HI kinematics of the
system. Our results lend themselves to the simple physical scenario in which
the young stellar core of the galaxy expels the gas outwards from the centre of
the disc, thereby creating a central HI under-density. These kinematics should
be thought of as being linked to a central HI outflow rather than a large-scale
galactic blow-out or wind.Comment: 11 pages, 6 figures, accepted for publication in MNRA
Starbursts and Star Clusters in the Ultraviolet
Hubble Space Telescope ultraviolet (UV) images of nine starburst galaxies
reveal them to be highly irregular, even after excluding compact sources
(clusters and resolved stars). Most (7/9) are found to have a similar intrinsic
effective surface brightnesses, suggesting that a negative feedback mechanism
is setting an upper limit to the star formation rate per unit area. All
starbursts in our sample contain UV bright star clusters indicating that
cluster formation is an important mode of star formation in starbursts. On
average about 20% of the UV luminosity comes from these clusters. The brightest
clusters, or super star clusters (SSC), are preferentially found at the very
heart of starbursts. The size of the nearest SSCs are consistent with those of
Galactic globular clusters. The luminosity function of SSCs is well represented
by a power law with a slope alpha ~ -2. There is a strong correlation between
the far infrared excess and the UV spectral slope. The correlation is well
modeled by a geometry where much of their dust is in a foreground screen near
to the starburst, but not by a geometry of well mixed stars and dust.Comment: 47 pages, text only, LaTeX with aaspp.sty (version 3.0), compressed
postscript figures available at
ftp://eta.pha.jhu.edu/RecentPublications/meurer
FUSE Observations of Outflowing OVI in the Dwarf Starburst Galaxy NGC1705
We report FUSE far-UV spectroscopy of the prototypical dwarf starburst galaxy
NGC 1705. These data allow us for the first time to probe the coronal-phase gas
(T = 10E5 to 10E6 K) that may dominate the radiative cooling of the
supernova-heated ISM and thereby determine the dynamical evolution of
starburst-driven outflows. We detect a broad (100 km/s) and blueshifted (by 80
km/s) OVI absorption-line arising in the previously-known galactic outflow. The
properties of the OVI absorption are inconsistent with the standard superbubble
model in which this gas arises in a conductive interface inside the outer
shell. We show that the superbubble in NGC 1705 is blowing out of the galaxy
ISM. During blow-out, coronal-phase gas can be created by hydrodynamical mixing
as hot gas rushes out through fissures in the fragmenting shell of cool gas. As
the coronal gas cools radiatively, it can naturally produce the observed OVI
column density and outflow speed. The OVI data show that the cooling rate in
the coronal-phase gas is less than about 10% of the supernova heating rate.
Since the X-ray luminosity from hotter gas is even smaller, we conclude that
radiative losses are insignificant. The outflow should be able to vent its
metals and kinetic energy out of the galaxy. This process has potentially
important implications for the evolution of dwarf galaxies and the IGM.Comment: ApJ (in press
On the Escape of Ionizing Radiation from Starbursts
Far-ultraviolet spectra obtained with show that the strong
1036 interstellar absorption-line is essentially black in five of
the UV-brightest local starburst galaxies. Since the opacity of the neutral ISM
below the Lyman-edge will be significantly larger than in the line, these
data provide strong constraints on the escape of ionizing radiation from these
starbursts. Interpreted as a a uniform absorbing slab, the implied optical
depth at the Lyman edge is huge (). Alternatively, the areal
covering factor of opaque material is typically 94%. Thus, the fraction
of ionizing stellar photons that escape the ISM of each galaxy is small: our
conservative estimates typically yield . Inclusion of
extinction due to dust will further decrease . An analogous analysis
of the rest-UV spectrum of the star-forming galaxy at =2.7
leads to similar constraints on . These new results agree with the
constraints provided by direct observations below the Lyman edge in a few other
local starbursts. However, they differ from the recently reported properties of
star-forming galaxies at 3. We assess the idea that the strong
galactic winds seen in many powerful starbursts clear channels through their
neutral ISM. We show empirically that such outflows may be a necessary - but
not sufficient - part of the process for creating a relatively porous ISM. We
note that observations will soon document the cosmic evolution in the
contribution of star-forming galaxies to the metagalactic ionizing background,
with important implications for the evolution of the IGM.Comment: 17 pages; ApJ, in pres
- …