115 research outputs found
The boundary length and point spectrum enumeration of partial chord diagrams using cut and join recursion
We introduce the boundary length and point spectrum, as a joint
generalization of the boundary length spectrum and boundary point spectrum in
arXiv:1307.0967. We establish by cut-and-join methods that the number of
partial chord diagrams filtered by the boundary length and point spectrum
satisfies a recursion relation, which combined with an initial condition
determines these numbers uniquely. This recursion relation is equivalent to a
second order, non-linear, algebraic partial differential equation for the
generating function of the numbers of partial chord diagrams filtered by the
boundary length and point spectrum.Comment: 16 pages, 6 figure
Topology of RNA-RNA interaction structures
The topological filtration of interacting RNA complexes is studied and the
role is analyzed of certain diagrams called irreducible shadows, which form
suitable building blocks for more general structures. We prove that for two
interacting RNAs, called interaction structures, there exist for fixed genus
only finitely many irreducible shadows. This implies that for fixed genus there
are only finitely many classes of interaction structures. In particular the
simplest case of genus zero already provides the formalism for certain types of
structures that occur in nature and are not covered by other filtrations. This
case of genus zero interaction structures is already of practical interest, is
studied here in detail and found to be expressed by a multiple context-free
grammar extending the usual one for RNA secondary structures. We show that in
time and space complexity, this grammar for genus zero
interaction structures provides not only minimum free energy solutions but also
the complete partition function and base pairing probabilities.Comment: 40 pages 15 figure
- …