5,698 research outputs found
Gravitational Repulsion within a Black-Hole using the Stueckelberg Quantum Formalism
We wish to study an application of Stueckelberg's relativistic quantum theory
in the framework of general relativity. We study the form of the wave equation
of a massive body in the presence of a Schwarzschild gravitational field. We
treat the mathematical behavior of the wavefunction also around and beyond the
horizon (r=2M). Classically, within the horizon, the time component of the
metric becomes spacelike and distance from the origin singularity becomes
timelike, suggesting an inevitable propagation of all matter within the horizon
to a total collapse at r=0. However, the quantum description of the wave
function provides a different understanding of the behavior of matter within
the horizon. We find that a test particle can almost never be found at the
origin and is more probable to be found at the horizon. Matter outside the
horizon has a very small wave length and therefore interference effects can be
found only on a very small atomic scale. However, within the horizon, matter
becomes totally "tachionic" and is potentially "spread" over all space. Small
location uncertainties on the atomic scale become large around the horizon, and
different mass components of the wave function can therefore interfere on a
stellar scale. This interference phenomenon, where the probability of finding
matter decreases as a function of the distance from the horizon, appears as an
effective gravitational repulsion.Comment: 20 pages, 6 figure
Measurement Theory in Lax-Phillips Formalism
It is shown that the application of Lax-Phillips scattering theory to quantum
mechanics provides a natural framework for the realization of the ideas of the
Many-Hilbert-Space theory of Machida and Namiki to describe the development of
decoherence in the process of measurement. We show that if the quantum
mechanical evolution is pointwise in time, then decoherence occurs only if the
Hamiltonian is time-dependent. If the evolution is not pointwise in time (as in
Liouville space), then the decoherence may occur even for closed systems. These
conclusions apply as well to the general problem of mixing of states.Comment: 14 pages, IASSNS-HEP 93/6
Discrete Symmetries of Off-Shell Electromagnetism
We discuss the discrete symmetries of the Stueckelberg-Schrodinger
relativistic quantum theory and its associated 5D local gauge theory, a
dynamical description of particle/antiparticle interactions, with monotonically
increasing Poincare-invariant parameter. In this framework, worldlines are
traced out through the parameterized evolution of spacetime events, advancing
or retreating with respect to the laboratory clock, with negative energy
trajectories appearing as antiparticles when the observer describes the
evolution using the laboratory clock. The associated gauge theory describes
local interactions between events (correlated by the invariant parameter)
mediated by five off-shell gauge fields. These gauge fields are shown to
transform tensorially under under space and time reflections, unlike the
standard Maxwell fields, and the interacting quantum theory therefore remains
manifestly Lorentz covariant. Charge conjugation symmetry in the quantum theory
is achieved by simultaneous reflection of the sense of evolution and the fifth
scalar field. Applying this procedure to the classical gauge theory leads to a
purely classical manifestation of charge conjugation, placing the CPT
symmetries on the same footing in the classical and quantum domains. In the
resulting picture, interactions do not distinguish between particle and
antiparticle trajectories -- charge conjugation merely describes the
interpretation of observed negative energy trajectories according to the
laboratory clock.Comment: 26 page
Hypercomplex quantum mechanics
The fundamental axioms of the quantum theory do not explicitly identify the
algebraic structure of the linear space for which orthogonal subspaces
correspond to the propositions (equivalence classes of physical questions). The
projective geometry of the weakly modular orthocomplemented lattice of
propositions may be imbedded in a complex Hilbert space; this is the structure
which has traditionally been used. This paper reviews some work which has been
devoted to generalizing the target space of this imbedding to Hilbert modules
of a more general type. In particular, detailed discussion is given of the
simplest generalization of the complex Hilbert space, that of the quaternion
Hilbert module.Comment: Plain Tex, 11 page
Semigroup evolution in Wigner Weisskopf pole approximation with Markovian spectral coupling
We establish the relation between the Wigner-Weisskopf theory for the
description of an unstable system and the theory of coupling to an environment.
According to the Wigner-Weisskopf general approach, even within the pole
approximation (neglecting the background contribution) the evolution of a total
system subspace is not an exact semigroup for the multi-channel decay, unless
the projectors into eigesntates of the reduced evolution generator are
orthogonal. In this case these projectors must be evaluated at different pole
locations . Since the orthogonality relation does not
generally hold at different values of , for example, when there is symmetry
breaking, the semigroup evolution is a poor approximation for the multi-channel
decay, even for a very weak coupling. Nevertheless, there exists a possibility
not only to ensure the orthogonality of the projectors regardless the
number of the poles, but also to simultaneously suppress the effect of the
background contribution. This possibility arises when the theory is generalized
to take into account interactions with an environment. In this case , and
hence its eigenvectors as well, are {\it independent} of , which corresponds
to a structure of the coupling to the continuum spectrum associated with the
Markovian limit.Comment: 9 pages, 3 figure
Towards a Realistic Equation of State of Strongly Interacting Matter
We consider a relativistic strongly interacting Bose gas. The interaction is
manifested in the off-shellness of the equilibrium distribution. The equation
of state that we obtain for such a gas has the properties of a realistic
equation of state of strongly interacting matter, i.e., at low temperature it
agrees with the one suggested by Shuryak for hadronic matter, while at high
temperature it represents the equation of state of an ideal ultrarelativistic
Stefan-Boltzmann gas, implying a phase transition to an effectively weakly
interacting phase.Comment: LaTeX, figures not include
Foundations of a spacetime path formalism for relativistic quantum mechanics
Quantum field theory is the traditional solution to the problems inherent in
melding quantum mechanics with special relativity. However, it has also long
been known that an alternative first-quantized formulation can be given for
relativistic quantum mechanics, based on the parametrized paths of particles in
spacetime. Because time is treated similarly to the three space coordinates,
rather than as an evolution parameter, such a spacetime approach has proved
particularly useful in the study of quantum gravity and cosmology. This paper
shows how a spacetime path formalism can be considered to arise naturally from
the fundamental principles of the Born probability rule, superposition, and
Poincar\'e invariance. The resulting formalism can be seen as a foundation for
a number of previous parametrized approaches in the literature, relating, in
particular, "off-shell" theories to traditional on-shell quantum field theory.
It reproduces the results of perturbative quantum field theory for free and
interacting particles, but provides intriguing possibilities for a natural
program for regularization and renormalization. Further, an important
consequence of the formalism is that a clear probabilistic interpretation can
be maintained throughout, with a natural reduction to non-relativistic quantum
mechanics.Comment: RevTex 4, 42 pages; V6 is as accepted for publication in the Journal
of Mathematical Physics, updated in response to referee comments; V7 includes
final editorial correction
- …