11,398 research outputs found

    Kinks: Fingerprints of strong electronic correlations

    Full text link
    The textbook knowledge of solid state physics is that the electronic specific heat shows a linear temperature dependence with the leading corrections being a cubic term due to phonons and a cubic-logarithmic term due to the interaction of electrons with bosons. We have shown that this longstanding conception needs to be supplemented since the generic behavior of the low-temperature electronic specific heat includes a kink if the electrons are sufficiently strongly correlatedComment: 4 pages, 1 figure, ICM 2009 conference proceedings (to appear in Journal of Physics: Conference Series

    Synthetic aperture radar target simulator

    Get PDF
    A simulator for simulating the radar return, or echo, from a target seen by a SAR antenna mounted on a platform moving with respect to the target is described. It includes a first-in first-out memory which has digital information clocked in at a rate related to the frequency of a transmitted radar signal and digital information clocked out with a fixed delay defining range between the SAR and the simulated target, and at a rate related to the frequency of the return signal. An RF input signal having a frequency similar to that utilized by a synthetic aperture array radar is mixed with a local oscillator signal to provide a first baseband signal having a frequency considerably lower than that of the RF input signal

    Signature of antiferromagnetic long-range order in the optical spectrum of strongly correlated electron systems

    Full text link
    We show how the onset of a non-Slater antiferromagnetic ordering in a correlated material can be detected by optical spectroscopy. Using dynamical mean-field theory we identify two distinctive features: The antiferromagnetic ordering is associated with an enhanced spectral weight above the optical gap, and well separated spin-polaron peaks emerge in the optical spectrum. Both features are indeed observed in LaSrMnO_4 [G\"ossling et al., Phys. Rev. B 77, 035109 (2008)]Comment: 11 pages, 9 figure

    The invisible power of fairness. How machine learning shapes democracy

    Full text link
    Many machine learning systems make extensive use of large amounts of data regarding human behaviors. Several researchers have found various discriminatory practices related to the use of human-related machine learning systems, for example in the field of criminal justice, credit scoring and advertising. Fair machine learning is therefore emerging as a new field of study to mitigate biases that are inadvertently incorporated into algorithms. Data scientists and computer engineers are making various efforts to provide definitions of fairness. In this paper, we provide an overview of the most widespread definitions of fairness in the field of machine learning, arguing that the ideas highlighting each formalization are closely related to different ideas of justice and to different interpretations of democracy embedded in our culture. This work intends to analyze the definitions of fairness that have been proposed to date to interpret the underlying criteria and to relate them to different ideas of democracy.Comment: 12 pages, 1 figure, preprint version, submitted to The 32nd Canadian Conference on Artificial Intelligence that will take place in Kingston, Ontario, May 28 to May 31, 201

    External calibration of SIR-B imagery with area-extended and point targets

    Get PDF
    Data-takes on two ascending orbits of the Shuttle Imaging Radar-B (SIR-B) over an agricultural test site in west-central Illinois were used to establish end-to-end transfer functions for conversion of the digital numbers on the 8-bit image to values of the radar backscattering coefficient sigma sup 0 (sq m/sq. m) in dB. The transfer function for each data-take was defined by the SIR-B response to an array of six calibrated point targets of known radar cross-section (transponders) and to a large number of area-extended targets also with known radar cross-section as measured by externally calibrated, truck-mounted scatterometers. The radar cross-section of each transponder at the SIR-B center frequency was measured on an antenna range as a function of local angle of incidence. Two truck-mounted scatterometers observed 20 to 80 agricultural fields daily at 1.6 GHz with HH polarization and at azimuth viewing angles and incidence angles equivalent to those of the SIR-B. The form of the transfer function is completely defined by the SIR-B receiver and the incoherent averaging procedure incorporated into production of the standard SIR-B image product

    Dynamical Mean-Field Theory for Molecular Electronics: Electronic Structure and Transport Properties

    Full text link
    We present an approach for calculating the electronic structure and transport properties of nanoscopic conductors that takes into account the dynamical correlations of strongly interacting d- or f-electrons by combining density functional theory calculations with the dynamical mean-field theory. While the density functional calculation yields a static mean-field description of the weakly interacting electrons, the dynamical mean-field theory explicitly takes into account the dynamical correlations of the strongly interacting d- or f-electrons of transition metal atoms. As an example we calculate the electronic structure and conductance of Ni nanocontacts between Cu electrodes. We find that the dynamical correlations of the Ni 3d-electrons give rise to quasi-particle resonances at the Fermi-level in the spectral density. The quasi-particle resonances in turn lead to Fano lineshapes in the conductance characteristics of the nanocontacts similar to those measured in recent experiments of magnetic nanocontacts.Comment: replaced with revised version; 11 pages; 9 figure

    Clues on the evolution of the Carina dwarf spheroidal galaxy from the color distribution of its red giant stars

    Get PDF
    The thin red giant branch (RGB) of the Carina dwarf spheroidal galaxy appears at first sight quite puzzling and seemingly in contrast with the presence of several distinct bursts of star formation. In this Letter, we provide a measurement of the color spread of red giant stars in Carina based on new BVI wide-field observations, and model the width of the RGB by means of synthetic color-magnitude diagrams. The measured color spread, Sigma{V-I}=0.021 +/- 0.005, is quite naturally accounted for by the star-formation history of the galaxy. The thin RGB appears to be essentially related to the limited age range of its dominant stellar populations, with no need for a metallicity dispersion at a given age. This result is relatively robust with respect to changes in the assumed age-metallicity relation, as long as the mean metallicity over the galaxy lifetime matches the observed value ([Fe/H] = -1.91 +/- 0.12 after correction for the age effects). This analysis of photometric data also sets some constraints on the chemical evolution of Carina by indicating that the chemical abundance of the interstellar medium in Carina remained low throughout each episode of star formation even though these episodes occurred over many Gyr.Comment: 4 pages, 3 figures, accepted for publication in the Astrophysical Journal Letter

    Non-resonant driving of H atom with broken time-reversal symmetry

    Full text link
    The dynamics of atomic hydrogen placed in a static electric field and illuminated by elliptically polarized microwaves is studied in the range of small field amplitudes where perturbation calculations are applicable. For a general configuration of the fields any generalized time-reversal symmetry is broken and, as the classical dynamics is chaotic, the level statistics obeys the random matrices prediction of Gaussian unitary ensemble.Comment: 4 pages, 2 figures, accepted for publication in J. Phys.

    Absence of halfmetallicity in defect-free Cr, Mn-delta-doped Digital Magnetic Heterostructures

    Full text link
    We present results of a combined density functional and many-body calculations for the electronic and magnetic properties of the defect-free digital ferromagnetic heterostructures obtained by doping GaAs with Cr and Mn. While local density approximation/(+U) predicts half-metallicity in these defect-free delta-doped heterostructures, we demonstrate that local many-body correlations captured by Dynamical Mean Field Theory induce within the minority spin channel non-quasiparticle states just above EFE_F. As a consequence of the existence of these many-body states the half-metallic gap is closed and the carriers spin polarization is significantly reduced. Below the Fermi level the minority spin highest valence states are found to localize more on the GaAs layers being independent of the type of electronic correlations considered. Thus, our results confirm the confinement of carriers in these delta-doped heterostructures, having a spin-polarization that follow a different temperature dependence than magnetization. We suggest that polarized hot-electron photoluminescence experiments might bring evidence for the existence of many-body states within the minority spin channel and their finite temperature behavior.Comment: 10 pages 8 figures, submitted to PR

    The Cerium volume collapse: Results from the LDA+DMFT approach

    Full text link
    The merger of density-functional theory in the local density approximation (LDA) and many-body dynamical mean field theory (DMFT) allows for an ab initio calculation of Ce including the inherent 4f electronic correlations. We solve the DMFT equations by the quantum Monte Carlo (QMC) technique and calculate the Ce energy, spectrum, and double occupancy as a function of volume. At low temperatures, the correlation energy exhibits an anomalous region of negative curvature which drives the system towards a thermodynamic instability, i.e., the γ\gamma-to-α\alpha volume collapse, consistent with experiment. The connection of the energetic with the spectral evolution shows that the physical origin of the energy anomaly and, thus, the volume collapse is the appearance of a quasiparticle resonance in the 4f-spectrum which is accompanied by a rapid growth in the double occupancy.Comment: 4 pages, 3 figure
    • …
    corecore