252 research outputs found
Surface Composition of Pluto's Kiladze Area and Relationship to Cryovolcanism
A link between exposures of water (HO) ice with traces of an
ammoniated compound (e.g., a salt) and the probable effusion of a water-rich
cryolava onto the surface of Pluto has been established in previous
investigations (Dalle Ore et al. 2019). Here we present the results from the
application of a machine learning technique and a radiative transfer model to a
water-ice-rich exposure in Kiladze area and surroundings on Pluto. We
demonstrate the presence of an ammoniated material suggestive of an
undetermined but relatively recent emplacement event. Kiladze lies in a region
of Pluto's surface that is structurally distinct from that of the areas where
similar evidence points to cryovolcanic activity at some undetermined time in
the planet's history. Although the Kiladze depression superficially resembles
an impact crater, a close inspection of higher-resolution images indicates that
the feature lacks the typical morphology of a crater. Here we suggest that a
cryolava water carrying an ammoniated component may have come onto the surface
at the Kiladze area via one or more volcanic collapses, as in a resurgent
volcanic caldera complex. Large regions east of Kiladze also exhibit the
presence of HO ice and have graben-like structures suggestive of
cryovolcanic activity, but with existing data are not amenable to the detailed
search that might reveal an ammoniated component.Comment: 28 pages, 11 figures, submitted to Icaru
Quaoar: New, Longitudinaly Resolved, Spectroscopic Characterization of Its Surface
(50000) Quaoar, one of the largest Trans-neptunian objects, is comparable in size to Pluto's moon Charon. However, while Charon's surface is rich almost exclusively in H2O ice, Quaoar's surface characterized by ices of CH4, N2, as well as C2H6, a product of irradiation of CH4 (Dalle Ore et al. 2009). Because of its distance from the Sun, Quaoar is expected to have preserved, to a degree, its original composition, however, its relatively small size did not make it a prime candidate for presence of volatile ices in the study by Schaller and Brown (2007). Furthermore, based on the Brown et al. (2011) study (Brown, Schaller, & Fraser, 2011. A Hypothesis for the Color Diversity of the Kuiper Belt. ApJL, 739, L60) its red coloration points to CH3OH as the ice which, when irradiated, might have produced the red material. We present new visible to near-infrared (0.3-2.48 micrometers) spectro-photometric data obtained with the XSHOOTER (Vernet et al. 2011, A&A, 536A, 105 ) instrument at the VLT-ESO facility at four different longitudes on the surface of Quaoar. The data are complemented by previously published photometric observations obtained in the near-infrared (3.6, 4.5 micrometers) with the Spitzer Space Telescope, which provide an extra set of constraints in the model calculation process in spite of the different observing times that preclude establishing the spatial consistency between the two sets. For each of the four spectra we perform spectral modeling of the entire wavelength range -from 0.3 to 4.5 micrometers- by means of a code based on the Shkuratov radiative transfer formulation of the slab model. We obtain spatially resolved compositional information for the surface of Quaoar supporting the presence of CH4 and C2H6, as previously reported, along with evidence for N2 and NH3OH. The albedo at the two Spitzer bands indicates the likely presence of CO and CO2. CH3OH, predicted on the basis of Quaoar's coloration (Brown et al. 2011), is not found at any of the four longitudes, implying that the presence of this ice is a sufficient, but not necessary condition for reddening of TNO surfaces. Other ices, in particular CH4 (Brunetto et al. 2006), have been shown to be plausible precursors for reddening of TNO surfaces
Composition of KBO (50000) Quaoar
Aims. The objective of this work is to investigate the physical properties of objects beyond Neptune-the new frontiers of the Solar System-and in particular to study the surface composition of (50 000) Quaoar, a classical Transneptunian (or Kuiper Belt) object. Because of its distance from the Sun, Quaoar is expected to have preserved, to a degree, its original composition. Our goals are to determine to what degree this is true and to shed light on the chemical evolution of this icy body. Methods. We present new near-infrared (3.6 and 4.5 mu m) photometric data obtained with the Spitzer Space Telescope. These data complement high resolution, low signal-to-noise spectroscopic and photometric data obtained in the visible and near-infrared (0.4-2.3 mu m) at VLT-ESO and provide an excellent set of constraints in the model calculation process. We perform spectral modeling of the entire wavelength range-from 0.3 to 4.5 mu m by means of a code based on the Shkuratov radiative transfer formulation of the slab model. We also attempt to determine the temperature of H(2)O ice making use of the crystalline feature at 1.65 mu m. Results. We present a model confirming previous results regarding the presence of crystalline H(2)O and CH(4) ice, as well as C(2)H(6) and organic materials, on the surface of this distant icy body. We attempt a measurement of the temperature and find that stronger constraints on the composition are needed to obtain a precise determination. Conclusions. Model fits indicate that N(2) may be a significant component, along with a component that is bright at lambda > 3.3 mu m, which we suggest at this time could be amorphous H(2)O ice in tiny grains or thin grain coatings. Irradiated crystalline H(2)O could be the source of small-grained amorphous H(2)O ice. The albedo and composition of Quaoar, in particular the presence of N(2), if confirmed, make this TNO quite similar to Triton and Pluto
Positronic lithium, an electronically stable Li-e ground state
Calculations of the positron-Li system were performed using the Stochastic
Variational Method and yielded a minimum energy of -7.53208 Hartree for the L=0
ground state. Unlike previous calculations of this system, the system was found
to be stable against dissociation into the Ps + Li channel with a binding
energy of 0.00217 Hartree and is therefore electronically stable. This is the
first instance of a rigorous calculation predicting that it is possible to
combine a positron with a neutral atom and form an electronically stable bound
state.Comment: 11 pages, 2 tables. To be published in Phys.Rev.Let
Phobos as a D-type captured asteroid, spectral modeling from 0.25 to 4.0 μm
This paper describes the spectral modeling of the surface of Phobos in the wavelength range between 0.25 and 4.0 μm. We use complementary data to cover this spectral range: the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System on board the ESA Rosetta spacecraft) reflectance spectrum that Pajola et al. merged with the VSK-KRFM-ISM (Videospectrometric Camera (VSK)-Combined Radiometer and Photometer for Mars (KRFM)-Imaging Spectrometer for Mars (ISM) on board the USSR Phobos 2 spacecraft) spectra by Murchie & Erard and the IRTF (NASA Infrared Telescope Facility, Hawaii, USA) spectra published by Rivkin et al. The OSIRIS data allow the characterization of an area of Phobos covering from 86.°8 N to 90° S in latitude and from 126° W to 286° W in longitude. This corresponds chiefly to the trailing hemisphere, but with a small sampling of the leading hemisphere as well. We compared the OSIRIS results with the Trojan D-type asteroid 624 Hektor and show that the overall slope and curvature of the two bodies over the common wavelength range are very similar. This favors Phobos being a captured D-type asteroid as previously suggested. We modeled the OSIRIS data using two models, the first one with a composition that includes organic carbonaceous material, serpentine, olivine, and basalt glass, and the second one consisting of Tagish Lake meteorite and magnesium-rich pyroxene glass. The results of these models were extended to longer wavelengths to compare the VSK-KRFM-ISM and IRTF data. The overall shape of the second model spectrum between 0.25 and 4.0 μm shows curvature and an albedo level that match both the OSIRIS and Murchie & Erard data and the Rivkin et al. data much better than the first model. The large interval fit is encouraging and adds weight to this model, making it our most promising fit for Phobos. Since Tagish Lake is commonly used as a spectral analog for D-type asteroids, this provides additional support for compositional similarities between Phobos and D-type asteroids. © 2013. The American Astronomical Society. All rights reserved
Pluto's global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data
On July 14th 2015, NASA's New Horizons mission gave us an unprecedented
detailed view of the Pluto system. The complex compositional diversity of
Pluto's encounter hemisphere was revealed by the Ralph/LEISA infrared
spectrometer on board of New Horizons. We present compositional maps of Pluto
defining the spatial distribution of the abundance and textural properties of
the volatiles methane and nitrogen ices and non-volatiles water ice and tholin.
These results are obtained by applying a pixel-by-pixel Hapke radiative
transfer model to the LEISA scans. Our analysis focuses mainly on the large
scale latitudinal variations of methane and nitrogen ices and aims at setting
observational constraints to volatile transport models. Specifically, we find
three latitudinal bands: the first, enriched in methane, extends from the pole
to 55deg N, the second dominated by nitrogen, continues south to 35deg N, and
the third, composed again mainly of methane, reaches 20deg N. We demonstrate
that the distribution of volatiles across these surface units can be explained
by differences in insolation over the past few decades. The latitudinal pattern
is broken by Sputnik Planitia, a large reservoir of volatiles, with nitrogen
playing the most important role. The physical properties of methane and
nitrogen in this region are suggestive of the presence of a cold trap or
possible volatile stratification. Furthermore our modeling results point to a
possible sublimation transport of nitrogen from the northwest edge of Sputnik
Planitia toward the south.Comment: 43 pages, 7 figures; accepted for publication in Icaru
Potential use of pyriproxyfen for control of Aedes aegypti (Diptera: Culicidae) in Iquitos, Peru
Los efectos del pyriproxyfen fueron evaluados contra una población local de Aedes aegypti (L.) en Iquitos, Perú. Los bioensayos mostraron que el pyriproxyfen previene la emergencia de adultos con concentraciones extremadamente bajas (LC50 = 0,012 ppb). No hubo emergencia de adultos de las muestras de agua obtenidas de los tanques de almacenamiento que habían sido tratados con el equivalente de 50-83 ppb (AI) de pyriproxyfen. Cinco meses después del tratamiento, a pesar de las constantes diluciones de estos tanques, las muestras de agua de estas fuentes continuaron siendo letales para las larvas y pupa
The time resolution of the St. Petersburg paradox
A resolution of the St. Petersburg paradox is presented. In contrast to the
standard resolution, utility is not required. Instead, the time-average
performance of the lottery is computed. The final result can be phrased
mathematically identically to Daniel Bernoulli's resolution, which uses
logarithmic utility, but is derived using a conceptually different argument.
The advantage of the time resolution is the elimination of arbitrary utility
functions.Comment: 20 pages, 1 figur
Kinematic Effects in Radiative Quarkonia Decays
Non-relativistic QCD (NRQCD) predicts colour octet contributions to be
significant not only in many production processes of heavy quarkonia but also
in their radiative decays. We investigate the photon energy distributions in
these processes in the endpoint region. There the velocity expansion of NRQCD
breaks down which requires a resummation of an infinite class of colour octet
operators to so-called shape functions. We model these non-perturbative
functions by the emission of a soft gluon cluster in the initial state. We
found that the spectrum in the endpoint region is poorly understood if the
values for the colour octet matrix elements are taken as large as indicated
from NRQCD scaling rules. Therefore the endpoint region should not be taken
into account for a fit of the strong coupling constant at the scale of the
heavy quark mass.Comment: LaTeX, 17 pages, 5 figures. The complete paper is also available via
the www at http://www-ttp.physik.uni-karlsruhe.de/Preprints
- …