71 research outputs found

    The Locus Lookup tool at MaizeGDB: identification of genomic regions in maize by integrating sequence information with physical and genetic maps

    Get PDF
    Methods to automatically integrate sequence information with physical and genetic maps are scarce. The Locus Lookup tool enables researchers to define windows of genomic sequence likely to contain loci of interest where only genetic or physical mapping associations are reported. Using the Locus Lookup tool, researchers will be able to locate specific genes more efficiently that will ultimately help them develop a better maize plant. With the availability of the well-documented source code, the tool can be easily adapted to other biological systems

    Association mapping across a multitude of traits collected in diverse environments in maize

    Get PDF
    Classical genetic studies have identified many cases of pleiotropy where mutations in individual genes alter many different phenotypes. Quantitative genetic studies of natural genetic variants frequently examine one or a few traits, limiting their potential to identify pleiotropic effects of natural genetic variants. Widely adopted community association panels have been employed by plant genetics communities to study the genetic basis of naturally occurring phenotypic variation in a wide range of traits. High-density genetic marker data—18M markers—from 2 partially overlapping maize association panels comprising 1,014 unique genotypes grown in field trials across at least 7 US states and scored for 162 distinct trait data sets enabled the identification of of 2,154 suggestive marker-trait associations and 697 confident associations in the maize genome using a resampling-based genome-wide association strategy. The precision of individual marker-trait associations was estimated to be 3 genes based on a reference set of genes with known phenotypes. Examples were observed of both genetic loci associated with variation in diverse traits (e.g., above-ground and below-ground traits), as well as individual loci associated with the same or similar traits across diverse environments. Many significant signals are located near genes whose functions were previously entirely unknown or estimated purely via functional data on homologs. This study demonstrates the potential of mining community association panel data using new higher-density genetic marker sets combined with resampling-based genome-wide association tests to develop testable hypotheses about gene functions, identify potential pleiotropic effects of natural genetic variants, and study genotype-by-environment interaction

    The MaizeGDB Genome Browser tutorial: one example of database outreach to biologists via video

    Get PDF
    Video tutorials are an effective way for researchers to quickly learn how to use online tools offered by biological databases. At MaizeGDB, we have developed a number of video tutorials that demonstrate how to use various tools and explicitly outline the caveats researchers should know to interpret the information available to them. One such popular video currently available is ‘Using the MaizeGDB Genome Browser’, which describes how the maize genome was sequenced and assembled as well as how the sequence can be visualized and interacted with via the MaizeGDB Genome Browser

    POPcorn: An Online Resource Providing Access to Distributed and Diverse Maize Project Data

    Get PDF
    The purpose of the online resource presented here, POPcorn (Project Portal for corn), is to enhance accessibility of maize genetic and genomic resources for plant biologists. Currently, many online locations are difficult to find, some are best searched independently, and individual project websites often degrade over time—sometimes disappearing entirely. The POPcorn site makes available (1) a centralized, web-accessible resource to search and browse descriptions of ongoing maize genomics projects, (2) a single, stand-alone tool that uses web Services and minimal data warehousing to search for sequence matches in online resources of diverse offsite projects, and (3) a set of tools that enables researchers to migrate their data to the long-term model organism database for maize genetic and genomic information: MaizeGDB. Examples demonstrating POPcorn's utility are provided herein

    MaizeGDB becomes ‘sequence-centric’

    Get PDF
    MaizeGDB is the maize research community’s central repository for genetic and genomic information about the crop plant and research model Zea mays ssp. mays. The MaizeGDB team endeavors to meet research needs as they evolve based on researcher feedback and guidance. Recent work has focused on better integrating existing data with sequence information as it becomes available for the B73, Mo17 and Palomero Toluqueño genomes. Major endeavors along these lines include the implementation of a genome browser to graphically represent genome sequences; implementation of POPcorn, a portal ancillary to MaizeGDB that offers access to independent maize projects and will allow BLAST similarity searches of participating projects’ data sets from a single point; and a joint MaizeGDB/PlantGDB project to involve the maize community in genome annotation. In addition to summarizing recent achievements and future plans, this article also discusses specific examples of community involvement in setting priorities and design aspects of MaizeGDB, which should be of interest to other database and resource providers seeking to better engage their users. MaizeGDB is accessible online at http://www.maizegdb.org

    Choosing a genome browser for a Model Organism Database: surveying the Maize community

    Get PDF
    As the B73 maize genome sequencing project neared completion, MaizeGDB began to integrate a graphical genome browser with its existing web interface and database. To ensure that maize researchers would optimally benefit from the potential addition of a genome browser to the existing MaizeGDB resource, personnel at MaizeGDB surveyed researchers’ needs. Collected data indicate that existing genome browsers for maize were inadequate and suggest implementation of a browser with quick interface and intuitive tools would meet most researchers’ needs. Here, we document the survey’s outcomes, review functionalities of available genome browser software platforms and offer our rationale for choosing the GBrowse software suite for MaizeGDB. Because the genome as represented within the MaizeGDB Genome Browser is tied to detailed phenotypic data, molecular marker information, available stocks, etc., the MaizeGDB Genome Browser represents a novel mechanism by which the researchers can leverage maize sequence information toward crop improvement directly

    MaizeGDB: curation and outreach go hand-in-hand

    Get PDF
    First released in 1991 with the name MaizeDB, the Maize Genetics and Genomics Database, now MaizeGDB, celebrates its 20th anniversary this year. MaizeGDB has transitioned from a focus on comprehensive curation of the literature, genetic maps and stocks to a paradigm that accommodates the recent release of a reference maize genome sequence, multiple diverse maize genomes and sequence-based gene expression data sets. The MaizeGDB Team is relatively small, and relies heavily on the research community to provide data, nomenclature standards and most importantly, to recommend future directions, priorities and strategies. Key aspects of MaizeGDB's intimate interaction with the community are the co-location of curators with maize research groups in multiple locations across the USA as well as coordination with MaizeGDB’s close partner, the Maize Genetics Cooperation—Stock Center. In this report, we describe how the MaizeGDB Team currently interacts with the maize research community and our plan for future interactions that will support updates to the functional and structural annotation of the B73 reference genome

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    BACKGROUND: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data was donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    Annotation Error in Public Databases: Misannotation of Molecular Function in Enzyme Superfamilies

    Get PDF
    Due to the rapid release of new data from genome sequencing projects, the majority of protein sequences in public databases have not been experimentally characterized; rather, sequences are annotated using computational analysis. The level of misannotation and the types of misannotation in large public databases are currently unknown and have not been analyzed in depth. We have investigated the misannotation levels for molecular function in four public protein sequence databases (UniProtKB/Swiss-Prot, GenBank NR, UniProtKB/TrEMBL, and KEGG) for a model set of 37 enzyme families for which extensive experimental information is available. The manually curated database Swiss-Prot shows the lowest annotation error levels (close to 0% for most families); the two other protein sequence databases (GenBank NR and TrEMBL) and the protein sequences in the KEGG pathways database exhibit similar and surprisingly high levels of misannotation that average 5%–63% across the six superfamilies studied. For 10 of the 37 families examined, the level of misannotation in one or more of these databases is >80%. Examination of the NR database over time shows that misannotation has increased from 1993 to 2005. The types of misannotation that were found fall into several categories, most associated with “overprediction” of molecular function. These results suggest that misannotation in enzyme superfamilies containing multiple families that catalyze different reactions is a larger problem than has been recognized. Strategies are suggested for addressing some of the systematic problems contributing to these high levels of misannotation
    corecore