396 research outputs found
High incidence of Angina pectoris in patients treated with 5-fluorouracil - A planned surveillance study with 102 patients
Objective: Angina pectoris, arrhythmic sudden death and myocardial infarction, all these cardiac events have occasionally been reported during 5-fluorouracil (5-FU) chemotherapy. Underlying mechanisms leading to these events are unknown; damage to the myocytes or vasospasms have been discussed. Methods: 102 consecutive and unselected patients were monitored with 12-lead ECG, echocardiography and radionuclide ventriculography prior to the first cycle of 5-FU chemotherapy and 3 months from baseline. Results: 19% of the patients developed reversible symptoms of angina pectoris during treatment which lasted up to 12 h after cessation of the infusion. Most of the 19 patients showed corresponding ECG changes. 6 out of the 19 patients with severe angina pectoris had subsequent coronary angiography. In none of these patients the coronary angiography showed coronary artery disease, but it showed low ventricular function (ejection fraction <50%) in 2 patients. The ejection fraction did not increase overtime. Arrhythmias were screened for with Holter monitoring during 5-FU chemotherapy. The frequency of bradycardia and ventricular extrasystoles increased significantly (p < 0.05) during treatment compared to arrhythmias in Holter monitoring 3 months later. Furthermore the Qtc time in the ECG 3 months later was significantly prolonged (p < 0.05) compared to baseline values. Conclusions:The incidence of angina pectoris in patients during 5-FU treatment seems higher than previously suspected. As myocardial ischemia can be fatal, attentiveness to these symptoms and immediate treatment are crucial. Copyright (C) 2003 S. Karger AG, Basel
THE EFFECT OF DIFFERENT FOOTWEAR ON THE MYOELECTRIC ACTIVITY OF M. TIBIALIS POSTERIOR DURING TREADMILL RUNNING
Overload running injuries of the lower extremity, particularly the knee, are associated with excessive pronation of the foot resulting in tibial rotation (Nigg et al., 1995). M. tibialis posterior (TP) is shown to have an active influence on pronation and the medial longitudinal arch (Kaye & Jahss, 1991). Its functional role during running and interaction with footwear is still not clearly understood (Reber et al., 1993; O’Connor & Hamill, 2004). Therefore the purpose of this study is to investigate the influence of different footwear on the muscle’s EMG pattern
WIRE EMG OF FLEXOR HALLUCIS LONGUS DURING BAREFOOT AND SHOD RUNNING ON A TREADMILL: A PILOT STUDY
Excessive pronation is associated with overload injuries of the lower extremity (Nigg, 1995). The flexor hallucis longus (FHL) acts against the pronation of the calcaneus (Klein, 1996). The influence of different footwear on the activity of the FHL was neither measured in walking nor running. The purpose of this study was to investigate the activity of the FHL during different phases in stance of walking and running in different footwear conditions
The Effect of Perioperative Auditory Stimulation with Music on Procedural Pain: A Narrative Review.
PURPOSE OF REVIEW
Music therapy has seen increasing applications in various medical fields over the last decades. In the vast range of possibilities through which music can relieve suffering, there is a risk that-given its efficacy-the physiological underpinnings are too little understood. This review provides evidence-based neurobiological concepts for the use of music in perioperative pain management.
RECENT FINDINGS
The current neuroscientific literature shows a significant convergence of the pain matrix and neuronal networks of pleasure triggered by music. These functions seem to antagonize each other and can thus be brought to fruition in pain therapy. The encouraging results of fMRI and EEG studies still await full translation of this top-down modulating mechanism into broad clinical practice. We embed the current clinical literature in a neurobiological framework. This involves touching on Bayesian "predictive coding" pain theories in broad strokes and outlining functional units in the nociception and pain matrix. These will help to understand clinical findings in the literature summarized in the second part of the review. There are opportunities for perioperative practitioners, including anesthesiologists treating acute pain and anxiety in emergency and perioperative situations, where music could help bring relieve to patients
Analgesia for the Bayesian Brain: How Predictive Coding Offers Insights Into the Subjectivity of Pain.
PURPOSE OF REVIEW
In order to better treat pain, we must understand its architecture and pathways. Many modulatory approaches of pain management strategies are only poorly understood. This review aims to provide a theoretical framework of pain perception and modulation in order to assist in clinical understanding and research of analgesia and anesthesia.
RECENT FINDINGS
Limitations of traditional models for pain have driven the application of new data analysis models. The Bayesian principle of predictive coding has found increasing application in neuroscientific research, providing a promising theoretical background for the principles of consciousness and perception. It can be applied to the subjective perception of pain. Pain perception can be viewed as a continuous hierarchical process of bottom-up sensory inputs colliding with top-down modulations and prior experiences, involving multiple cortical and subcortical hubs of the pain matrix. Predictive coding provides a mathematical model for this interplay
Search for proton emission of the isomeric 10+ state in 54 Ni
9 pags., 7 figs., 1 tab.Several experiments were conducted at the 10 MV Van-de-Graaff tandem accelerator at the Institute of Nuclear Physics, Cologne, to detect proton emission from the isomeric 6457-keV 10 state in Ni. Excitation functions for two fusion–evaporation reactions were measured to maximise the population of the rare two-neutron evaporation channel from a Ni compound nucleus. The search for delayed proton emission was based on the Si (Si , 2 n)Ni reaction at a beam energy of 70 MeV. For this reaction, a cross-section limit for the population of the 10 state in Ni and its proton-decay branch was determined to be σ< 22 nb.Open Access funding provided by Projekt DEAL.
We would like to thank the accelerator staff at the University of Cologne
for the efforts to deliver heavy-ion beams of excellent quality, as well as
the Swedish Research Council (contract VR 2008-4240 and VR 2016-
3969) for financial support
Spin-locking in low-frequency reaction yield detected magnetic resonance
The purported effects of weak magnetic fields on various biological systems from animal magnetoreception to human health have
generated widespread interest and sparked much controversy in the past decade. To date the only well established mechanism
by which the rates and yields of chemical reactions are known to be influenced by magnetic fields is the radical pair mechanism,
based on the spin-dependent reactivity of radical pairs. A diagnostic test for the operation of the radical pair mechanism was
proposed by Henbest et al. [J. Am. Chem. Soc., 2004, 126, 8102] based on the combined effects of weak static magnetic
fields and radiofrequency oscillating fields in a reaction yield detected magnetic resonance experiment. Here we investigate
the effects on radical pair reactions of applying relatively strong oscillating fields, both parallel and perpendicular to the static
field. We demonstrate the importance of understanding the effect of the strength of the radiofrequency oscillating field; our
experiments demonstrate that there is an optimal oscillating field strength above which the observed signal decreases in intensity
and eventually inverts. We establish the correlation between the onset of this effect and the hyperfine structure of the radicals
involved, and identify the existence of ‘overtone’ type features appearing at multiples of the expected resonance field positio
Charge Symmetry Breaking in dd->4He{\pi}0 with WASA-at-COSY
Charge symmetry breaking (CSB) observables are a suitable experimental tool
to examine effects induced by quark masses on the nuclear level. Previous high
precision data from TRIUMF and IUCF are currently used to develop a consistent
description of CSB within the framework of chiral perturbation theory. In this
work the experimental studies on the reaction dd->4He{\pi}0 have been extended
towards higher excess energies in order to provide information on the
contribution of p-waves in the final state. For this, an exclusive measurement
has been carried out at a beam momentum of p=1.2 GeV/c using the WASA-at-COSY
facility. The total cross section amounts to sigma(tot) = (118 +- 18(stat) +-
13(sys) +- 8(ext)) pb and first data on the differential cross section are
consistent with s-wave pion production.Comment: 14 pages, 5 figure
- …