282 research outputs found

    Direct Bandgap Cross-over Point of Ge\u3csub\u3e1-y\u3c/sub\u3eSn\u3csub\u3ey\u3c/sub\u3e Grown on Si Estimated through Temperature-dependent Photoluminescence Studies

    Get PDF
    Epitaxial Ge1-ySny (y = 0%–7.5%) alloys grown on either Si or Ge-buffered Si substrates by chemical vapor deposition were studied as a function of Sn content using temperature-dependent photoluminescence (PL). PL emission peaks from both the direct bandgap (Γ-valley) and the indirect bandgap (L-valley) to the valence band (denoted by ED and EID, respectively) were clearly observed at 125 and 175 K for most Ge1-ySny samples studied. At 300 K, however, all of the samples exhibited dominant ED emission with either very weak or no measureable EID emission. At 10 K, ED is dominant only for Ge1-ySny with y \u3e 0.052. From the PL spectra taken at 125 and 175 K, the unstrained indirect and direct bandgap energies were calculated and are plotted as a function of Sn concentration, the results of which show that the indirect-to-direct bandgap transition occurs at ∼6.7% Sn. It is believed that the true indirect-to-direct bandgap cross-over of unstrained Ge1-ySny might also take place at about the same Sn content at room temperature. This observation suggests that these Ge1-ySny alloys could become very promising direct bandgap semiconductor materials, which will be very useful for the development of various new novel Si- and Ge-based infrared optoelectronic devices that can be fully integrated with current technology on a single Si chip

    Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial

    Get PDF
    IMPORTANCE: Secretory phospholipase A2(sPLA2) generates bioactive phospholipid products implicated in atherosclerosis. The sPLA2inhibitor varespladib has favorable effects on lipid and inflammatory markers; however, its effect on cardiovascular outcomes is unknown. OBJECTIVE: To determine the effects of sPLA2inhibition with varespladib on cardiovascular outcomes. DESIGN, SETTING, AND PARTICIPANTS: A double-blind, randomized, multicenter trial at 362 academic and community hospitals in Europe, Australia, New Zealand, India, and North America of 5145 patients randomized within 96 hours of presentation of an acute coronary syndrome (ACS) to either varespladib (n = 2572) or placebo (n = 2573) with enrollment between June 1, 2010, and March 7, 2012 (study termination on March 9, 2012). INTERVENTIONS: Participants were randomized to receive varespladib (500 mg) or placebo daily for 16 weeks, in addition to atorvastatin and other established therapies. MAIN OUTCOMES AND MEASURES: The primary efficacy measurewas a composite of cardiovascular mortality, nonfatal myocardial infarction (MI), nonfatal stroke, or unstable angina with evidence of ischemia requiring hospitalization at 16 weeks. Six-month survival status was also evaluated. RESULTS: At a prespecified interim analysis, including 212 primary end point events, the independent data and safety monitoring board recommended termination of the trial for futility and possible harm. The primary end point occurred in 136 patients (6.1%) treated with varespladib compared with 109 patients (5.1%) treated with placebo (hazard ratio [HR], 1.25; 95%CI, 0.97-1.61; log-rank P = .08). Varespladib was associated with a greater risk of MI (78 [3.4%] vs 47 [2.2%]; HR, 1.66; 95%CI, 1.16-2.39; log-rank P = .005). The composite secondary end point of cardiovascular mortality, MI, and stroke was observed in 107 patients (4.6%) in the varespladib group and 79 patients (3.8%) in the placebo group (HR, 1.36; 95% CI, 1.02-1.82; P = .04). CONCLUSIONS AND RELEVANCE: In patients with recent ACS, varespladib did not reduce the risk of recurrent cardiovascular events and significantly increased the risk of MI. The sPLA2inhibition with varespladib may be harmful and is not a useful strategy to reduce adverse cardiovascular outcomes after ACS. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01130246. Copyright 2014 American Medical Association. All rights reserved

    The bisphosphonate pamidronate induces apoptosis in human melanoma cells in vitro

    Get PDF
    Pamidronate belongs to the class of nitrogen-containing bisphosphonates that are potent inhibitors of bone resorption frequently used for the treatment of osteoporosis and cancer-induced osteolysis. The inhibition of osteoclasts’ growth has been suggested as the main mechanism of the inhibitory effect of pamidronate on bone metastases. Recent findings indicated that bisphosphonates also have a direct apoptotic effect on other types of tumour cells. Nitrogen-containing bisphosphonates were shown to inhibit farnesyl diphosphate synthase, thus blocking the synthesis of higher isoprenoids. By this mechanism they inactivate monomeric G-proteins of the Ras and Rho families for which prenylation is a functional requirement. On the background of the known key role of G-proteins in tumorigenesis, we investigated a possible beneficial use of pamidronate in the treatment of malignant melanoma. Our results indicate that pamidronate inhibits the cell growth and induces apoptosis in human melanoma cells in vitro. Susceptibility to pamidronate did not correlate to CD95 ligand sensitivity or p53 mutational status. Furthermore it is interesting to note that overexpression of bcl-2 did not abolish pamidronate-induced apoptosis. These data suggests that pamidronate has a direct anti-tumour effect on malignant melanoma cells, independently of the Bax/Bcl-2 level
    corecore