4,006 research outputs found

    Attractive Hubbard Model on a Honeycomb Lattice

    Full text link
    We study the attractive fermionic Hubbard model on a honeycomb lattice using determinantal quantum Monte Carlo simulations. By increasing the interaction strength U (relative to the hopping parameter t) at half-filling and zero temperature, the system undergoes a quantum phase transition at 5.0 < U_c/t < 5.1 from a semi-metal to a phase displaying simultaneously superfluid behavior and density order. Doping away from half-filling, and increasing the interaction strength at finite but low temperature T, the system always appears to be a superfluid exhibiting a crossover between a BCS and a molecular regime. These different regimes are analyzed by studying the spectral function. The formation of pairs and the emergence of phase coherence throughout the sample are studied as U is increased and T is lowered

    Experimental Limit on the Cosmic Diffuse Ultra-high Energy Neutrino Flux

    Full text link
    We report results from 120 hours of livetime with the Goldstone Lunar Ultra-high energy neutrino Experiment (GLUE). The experiment searches for <10 ns microwave pulses from the lunar regolith, appearing in coincidence at two large radio telescopes separated by 22 km and linked by optical fiber. Such pulses would arise from subsurface electromagnetic cascades induced by interactions of >= 100 EeV neutrinos in the lunar regolith. No candidates are yet seen, and the implied limits constrain several current models for ultra-high energy neutrino fluxes.Comment: 4 pages, 4 figures, revtex4 style. New intro section, Fig. 2, Fig 4; in final PRL revie

    Activity of different desoximetasone preparations compared to other topical corticosteroids in the vasoconstriction assay

    Get PDF
    Introduction: We report on a double-blind, vehicle-controlled, single-center confirmatory study with random assignment. The purpose of the study was to investigate the topical bioavailability of different topical corticosteroid formulations in healthy human beings focussing on desoximetasone (DM). Materials and Methods: Two DM 0.25% formulations {[}ointment (DM-o) and fatty ointment (DM-fo, water-free); class III corticosteroids], the corresponding active ingredient-free vehicles and three comparators of different strength {[}clobetasol propionate 0.05% (CP 0.05%), fatty ointment, class IV; hydrocortisone (HC) 1%, fatty ointment, class I, and betamethasone (BM) 0.05%, fatty ointment, class III] were tested using the vasoconstriction assay. The degree of vasoconstriction (blanching) in the treatment field was compared to the one found in untreated control fields using chromametric measurements and clinical assessment. Results/Conclusion: DM-o 0.25%, DM-fo 0.25% and BM 0.05% showed similar vasoconstrictive potential, i.e., clear blanching. In fact, both DM preparations were proven to be non-inferior to BM 0.05%, while CP 0.05% was found a little less active. HC 1.0% and the DM vehicles showed no clear-cut vasoconstrictive effect. No adverse events related to the study medications were observed. Good topical bioavailability of both DM formulations was detected by chromametric measurement and clinical assessment. Copyright (C) 2008 S. Karger AG, Basel

    The Effect of Splayed Pins on Vortex Creep and Critical Currents

    Full text link
    We study the effects of splayed columnar pins on the vortex motion using realistic London Langevin simulations. At low currents vortex creep is strongly suppressed, whereas the critical current j_c is enhanced only moderately. Splaying the pins generates an increasing energy barrier against vortex hopping, and leads to the forced entanglement of vortices, both of which suppress creep efficiently. On the other hand splaying enhances kink nucleation and introduces intersecting pins, which cut off the energy barriers. Thus the j_c enhancement is strongly parameter sensitive. We also characterize the angle dependence of j_c, and the effect of different splaying geometries.Comment: 4 figure

    Observations of Microwave Continuum Emission from Air Shower Plasmas

    Full text link
    We investigate a possible new technique for microwave measurements of ultra-high energy cosmic ray (UHECR) extensive air showers which relies on detection of expected continuum radiation in the microwave range, caused by free-electron collisions with neutrals in the tenuous plasma left after the passage of the shower. We performed an initial experiment at the AWA (Argonne Wakefield Accelerator) laboratory in 2003 and measured broadband microwave emission from air ionized via high energy electrons and photons. A follow-up experiment at SLAC (Stanford Linear Accelerator Center) in summer of 2004 confirmed the major features of the previous AWA observations with better precision and made additional measurements relevant to the calorimetric capabilities of the method. Prompted by these results we built a prototype detector using satellite television technology, and have made measurements indicating possible detection of cosmic ray extensive air showers. The method, if confirmed by experiments now in progress, could provide a high-duty cycle complement to current nitrogen fluorescence observations of UHECR, which are limited to dark, clear nights. By contrast, decimeter microwave observations can be made both night and day, in clear or cloudy weather, or even in the presence of moderate precipitation.Comment: 15 pages, 13 figure

    Epidemiology of neuropathic pain:an analysis of prevalence and associated factors in UK Biobank

    Get PDF
    Abstract. Introduction:. Previous epidemiological studies of neuropathic pain have reported a range of prevalences and factors associated with the disorder. Objectives:. This study aimed to verify these characteristics in a large UK cohort. Methods:. A cross-sectional analysis was conducted of 148,828 UK Biobank participants who completed a detailed questionnaire on chronic pain. The Douleur Neuropathique en Quatre Questions (DN4) was used to distinguish between neuropathic pain (NeuP) and non-neuropathic pain (non-NeuP) in participants with pain of at least 3 months' duration. Participants were also identified with less than 3 months' pain or without pain (NoCP). Multivariable regression was used to identify factors associated with NeuP compared with non-NeuP and NoCP, respectively. Results:. Chronic pain was present in 76,095 participants (51.1%). The overall prevalence of NeuP was 9.2%. Neuropathic pain was significantly associated with worse health-related quality of life, having a manual or personal service type occupation, and younger age compared with NoCP. As expected, NeuP was associated with diabetes and neuropathy, but also other pains (pelvic, postsurgical, and migraine) and musculoskeletal disorders (rheumatoid arthritis, osteoarthritis, and fibromyalgia). In addition, NeuP was associated with pain in the limbs and greater pain intensity and higher body mass index compared with non-NeuP. Female sex was associated with NeuP when compared with NoCP, whereas male sex was associated with NeuP when compared with non-NeuP. Conclusion:. This is the largest epidemiological study of neuropathic pain to date. The results confirm that the disorder is common in a population of middle- to older-aged people with mixed aetiologies and is associated with a higher health impact than non-neuropathic pain

    Studies of WW and WZ production and limits on anomalous WWγ and WWZ couplings

    Get PDF
    This is the publisher's version, also available electronically from http://journals.aps.org/prd/abstract/10.1103/PhysRevD.60.072002.Evidence of anomalous WW and WZ production was sought in pp-bar collisions at a center-of-mass energy of s√=1.8TeV. The final states WW(WZ)→μν jet jet+X, WZ⃗ μνee+X and WZ⃗ eνee+X were studied using a data sample corresponding to an integrated luminosity of approximately 90pb-1. No evidence of anomalous diboson production was found. Limits were set on anomalous WWγ and WWZ couplings and were combined with our previous results. The combined 95% confidence level anomalous coupling limits for Λ=2TeV are -0.25<~Δκ<~0.39 (λ=0) and -0.18<~λ<~0.19 (Δκ=0), assuming the WWγ couplings are equal to the WWZ couplings

    Measurement of the angular distribution of electrons from W⃗ eν decays observed in pp-bar collisions at s√=1.8 TeV

    Get PDF
    This is the publisher's version, also available electronically from http://journals.aps.org/prd/abstract/10.1103/PhysRevD.63.072001.We present the first measurement of the electron angular distribution parameter α(2) in W⃗ eν events produced in proton-antiproton collisions as a function of the W boson transverse momentum. Our analysis is based on data collected using the DØ detector during the 1994–1995 Fermilab Tevatron run. We compare our results with next-to-leading order perturbative QCD, which predicts an angular distribution of (1±α(1c)osθ*+α(2)cos(2)θ*), where θ* is the polar angle of the electron in the Collins-Soper frame. In the presence of QCD corrections, the parameters α(1) and α(2) become functions of pWT, the W boson transverse momentum. This measurement provides a test of next-to-leading order QCD corrections which are a non-negligible contribution to the W boson mass measurement
    corecore