45,654 research outputs found

    Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates

    Get PDF
    A method for fabricating planar implantable microelectrode arrays was demonstrated using a process that relied on ultra-thin silicon substrates, which ranged in thickness from 25 to 50 µm. The challenge of handling these fragile materials was met via a temporary substrate support mechanism. In order to compensate for putative electrical shielding of extracellular neuronal fields, separately addressable electrode arrays were defined on each side of the silicon device. Deep reactive ion etching was employed to create sharp implantable shafts with lengths of up to 5 mm. The devices were flip-chip bonded onto printed circuit boards (PCBs) by means of an anisotropic conductive adhesive film. This scalable assembly technique enabled three-dimensional (3D) integration through formation of stacks of multiple silicon and PCB layers. Simulations and measurements of microelectrode noise appear to suggest that low impedance surfaces, which could be formed by electrodeposition of gold or other materials, are required to ensure an optimal signal-to-noise ratio as well a low level of interchannel crosstalk

    Degenerate states of narrow semiconductor rings in the presence of spin orbit coupling: Role of time-reversal and large gauge transformations

    Full text link
    The electron Hamiltonian of narrow semiconductor rings with the Rashba and Dresselhaus spin orbit terms is invariant under time-reversal operation followed by a large gauge transformation. We find that all the eigenstates are doubly degenerate when integer or half-integer quantum fluxes thread the quantum ring. The wavefunctions of a degenerate pair are related to each other by the symmetry operation. These results are valid even in the presence of a disorder potential. When the Zeeman term is present only some of these degenerate levels anticross

    Self-shadowing Effects of Slim Accretion Disks in Active Galactic Nuclei: Diverse Appearance of the Broad-line Region

    Full text link
    Supermassive black holes in active galactic nuclei (AGNs) undergo a wide range of accretion rates, which lead to diversity of appearance. We consider the effects of anisotropic radiation from accretion disks on the broad-line region (BLR), from the Shakura-Sunyaev regime to slim disks with super-Eddington accretion rates. The geometrically thick funnel of the inner region of slim disks produces strong self-shadowing effects that lead to very strong anisotropy of the radiation field. We demonstrate that the degree of anisotropy of the radiation fields grows with increasing accretion rate. As a result of this anisotropy, BLR clouds receive different spectral energy distributions depending on their location relative to the disk, resulting in diverse observational appearance of the BLR. We show that the self-shadowing of the inner parts of the disk naturally produces two dynamically distinct regions of the BLR, depending on accretion rate. These two regions manifest themselves as kinematically distinct components of the broad Hβ\beta line profile with different line widths and fluxes, which jointly account for the Lorentzian profile generally observed in narrow-line Seyfert 1 galaxies. In the time domain, these two components are expected reverberate with different time lags with respect to the varying ionizing continuum, depending on the accretion rate and the viewing angle of the observer. The diverse appearance of the BLR due to the anisotropic ionizing energy source can be tested by reverberation mapping of Hβ\beta and other broad emission lines (e.g., \feii), providing a new tool to diagnose the structure and dynamics of the BLR. Other observational consequences of our model are also explored.Comment: emulatapj style, 15 pages, 6 figures, in pres

    Semiclassical Green Function in Mixed Spaces

    Get PDF
    A explicit formula on semiclassical Green functions in mixed position and momentum spaces is given, which is based on Maslov's multi-dimensional semiclassical theory. The general formula includes both coordinate and momentum representations of Green functions as two special cases of the form.Comment: 8 pages, typeset by Scientific Wor

    Experimental Demonstration of Quantum State Multi-meter and One-qubit Fingerprinting in a Single Quantum Device

    Full text link
    We experimentally demonstrate in NMR a quantum interferometric multi-meter for extracting certain properties of unknown quantum states without resource to quantum tomography. It can perform direct state determinations, eigenvalue/eigenvector estimations, purity tests of a quantum system, as well as the overlap of any two unknown quantum states. Using the same device, we also demonstrate one-qubit quantum fingerprinting
    • …
    corecore