2,674 research outputs found

    Forecasting and Hedging Crop Input Prices

    Get PDF
    Replaced with edited version of paper 12/23/08.Farm Management,

    Explicit SO(10) Supersymmetric Grand Unified Model for the Higgs and Yukawa Sectors

    Full text link
    A complete set of fermion and Higgs superfields is introduced with well-defined SO(10) properties and U(1) x Z_2 x Z_2 family charges from which the Higgs and Yukawa superpotentials are constructed. The structures derived for the four Dirac fermion and right-handed Majorana neutrino mass matrices coincide with those previously obtained from an effective operator approach. Ten mass matrix input parameters accurately yield the twenty masses and mixings of the quarks and leptons with the bimaximal atmospheric and solar neutrino vacuum solutions favored in this simplest version.Comment: Published version appearing in PRL in which small modifications to original submission and a paragraph concerning proton decay appea

    Realization of the Large Mixing Angle Solar Neutrino Solution in an SO(10) Supersymmetric Grand Unified Model

    Get PDF
    An SO(10) supersymmetric grand unified model proposed earlier leading to the solar solution involving ``just-so'' vacuum oscillations is reexamined to study its ability to obtain the other possible solar solutions. It is found that all four viable solar neutrino oscillation solutions can be achieved in the model simply by modification of the right-handed Majorana neutrino mass matrix, M_R. Whereas the small mixing and vacuum solutions are easily obtained with several texture zeros in M_R, the currently-favored large mixing angle solution requires a nearly geometric hierarchical form for M_R that leads by the seesaw formula to a light neutrino mass matrix which has two or three texture zeros. The form of the matrix which provides the ``fine-tuning'' necessary to achieve the large mixing angle solution can be understood in terms of Froggatt-Nielsen diagrams for the Dirac and right-handed Majorana neutrino mass matrices. The solution fulfils several leptogenesis requirements which in turn can be responsible for the baryon asymmetry in the universe.Comment: 14 pages including 2 figure

    Bound-State Model of Weak and Strong Interactions

    Get PDF
    The pion-nucleon coupling constant is calculated from first principles by use of the N/D matrix method. Three models are introduced which contain pions, nucleons, and weakly interacting intermediate bosons of the scalar, pseudoscalar, and vector variety. The basic interactions are taken to be parity and isotopic spin conserving. Certain physical assumptions in the nature of boundary conditions and the known fact that the weak coupling is very weak, together with use of the Born approximation for N, enable us to obtain an eigenvalue equation which expresses the pion-nucleon coupling constant in terms of the three masses in the problem. The correct value for gπ^2 can be obtained for an intermediate vector meson of mass comparable to the nucleon mass with essentially no cutoff employed; on the other hand, the experimental value is also obtained with a spin-zero boson and a relatively small cutoff energy

    Resonant leptogenesis in a predictive SO(10) grand unified model

    Full text link
    An SO(10) grand unified model considered previously by the authors featuring lopsided down quark and charged lepton mass matrices is successfully predictive and requires that the lightest two right-handed Majorana neutrinons be nearly degenerate in order to obtain the LMA solar neutrino solution. Here we use this model to test its predictions for baryogenesis through resonant-enhanced leptogenesis. With the conventional type I seesaw mechanism, the best predictions for baryogenesis appear to fall a factor of three short of the observed value. However, with a proposed type III seesaw mechanism leading to three pairs of massive pseudo-Dirac neutrinos, resonant leptogenesis is decoupled from the neutrino mass and mixing issues with successful baryogenesis easily obtained.Comment: 22 pages including 1 figure; published version with reference adde

    RISK ANALYSIS OF ADOPTING ZERO RUNOFF SUBIRRIGATION SYSTEMS IN GREENHOUSE OPERATIONS: A MONTE CARLO SIMULATION APPROACH

    Get PDF
    Zero runoff subirrigation (ZRS) technology can effectively manage fertilizer input while improving greenhouse production efficiency. However, high capital investment costs and inadequate technical information to growers are impediments for adoption. A Monte Carlo simulation was used to compare the profitability and risks of alternative ZRS system investments for greenhouse operations in the northeastern and north central United States. Results showed that the Dutch movable tray system and the flood floor system were most profitable and least risky for small potted plant and bedding crop flat production, respectively. The trough bench system was least favorable because its profitability was low and highly volatile.Risk and Uncertainty,
    • …
    corecore