7 research outputs found

    Influence of the upper critical field anisotropy on the transport properties of polycrystalline MgB2_{2}

    Full text link
    The intrinsic properties of MgB2_2 form the basis for all applications of this superconductor. We wish to emphasize that the application range of polycrystalline MgB2_2 is limited by the upper critical field Hc2_{c2} and its anisotropy. In wires or tapes, the MgB2_2 grains are randomly oriented or only slightly textured and the anisotropy of the upper critical field leads to different transport properties in different grains, if a magnetic field is applied and the current transport becomes percolative. The irreversibility line is caused by the disappearance of a continuous superconducting current path and not by depinning as in high temperature superconductors. Based on a percolation model, we demonstrate how changes of the upper critical field and its anisotropy and how changes of flux pinning will influence the critical currents of a wire or a tape. These predictions are compared to results of neutron irradiation experiments, where these parameters were changed systematically

    Analogies and differences among bacterial and viral disinfection by the photo-Fenton process at neutral pH: a mini review

    No full text
    corecore