2 research outputs found

    Two interacting diffusing particles on low-dimensional discrete structures

    Full text link
    In this paper we study the motion of two particles diffusing on low-dimensional discrete structures in presence of a hard-core repulsive interaction. We show that the problem can be mapped in two decoupled problems of single particles diffusing on different graphs by a transformation we call 'diffusion graph transform'. This technique is applied to study two specific cases: the narrow comb and the ladder lattice. We focus on the determination of the long time probabilities for the contact between particles and their reciprocal crossing. We also obtain the mean square dispersion of the particles in the case of the narrow comb lattice. The case of a sticking potential and of 'vicious' particles are discussed.Comment: 9 pages, 6 postscript figures, to appear in 'Journal of Physics A',-January 200

    From Vicious Walkers to TASEP

    Get PDF
    We propose a model of semi-vicious walkers, which interpolates between the totally asymmetric simple exclusion process and the vicious walkers model, having the two as limiting cases. For this model we calculate the asymptotics of the survival probability for mm particles and obtain a scaling function, which describes the transition from one limiting case to another. Then, we use a fluctuation-dissipation relation allowing us to reinterpret the result as the particle current generating function in the totally asymmetric simple exclusion process. Thus we obtain the particle current distribution asymptotically in the large time limit as the number of particles is fixed. The results apply to the large deviation scale as well as to the diffusive scale. In the latter we obtain a new universal distribution, which has a skew non-Gaussian form. For mm particles its asymptotic behavior is shown to be ey22m2e^{-\frac{y^{2}}{2m^{2}}} as yy\to -\infty and ey22mym(m1)2e^{-\frac{y^{2}}{2m}}y^{-\frac{m(m-1)}{2}} as yy\to \infty .Comment: 37 pages, 4 figures, Corrected reference
    corecore