243 research outputs found
Twisted and Nontwisted Bifurcations Induced by Diffusion
We discuss a diffusively perturbed predator-prey system. Freedman and
Wolkowicz showed that the corresponding ODE can have a periodic solution that
bifurcates from a homoclinic loop. When the diffusion coefficients are large,
this solution represents a stable, spatially homogeneous time-periodic solution
of the PDE. We show that when the diffusion coefficients become small, the
spatially homogeneous periodic solution becomes unstable and bifurcates into
spatially nonhomogeneous periodic solutions.
The nature of the bifurcation is determined by the twistedness of an
equilibrium/homoclinic bifurcation that occurs as the diffusion coefficients
decrease. In the nontwisted case two spatially nonhomogeneous simple periodic
solutions of equal period are generated, while in the twisted case a unique
spatially nonhomogeneous double periodic solution is generated through
period-doubling.
Key Words: Reaction-diffusion equations; predator-prey systems; homoclinic
bifurcations; periodic solutions.Comment: 42 pages in a tar.gz file. Use ``latex2e twisted.tex'' on the tex
files. Hard copy of figures available on request from
[email protected]
Localizing gravity on Maxwell gauged CP1 model in six dimensions
We shall consider about a 3-brane embedded in six-dimensional space-time with
a negative bulk cosmological constant. The 3-brane is constructed by a
topological soliton solution living in two-dimensional axially symmetric
transverse subspace. Similar to most previous works of six-dimensional soliton
models, our Maxwell gauged CP1 brane model can also achieve to localize gravity
around the 3-brane. The CP1 field is described by a scalar doublet and derived
from O(3) sigma model by projecting it onto two-dimensional complex space. In
that sense, our framework is more effective than other solitonic brane models
concerning with gauge theory. We shall also discuss about linear stability
analysis for our new model by fluctuating all fields.Comment: 23 pages, 7 figures; references adde
Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms
Ultra-low density polymers, metals, and ceramic nanofoams are valued for
their high strength-to-weight ratio, high surface area and insulating
properties ascribed to their structural geometry. We obtain the labrynthine
internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging.
Finite element analysis from the structure reveals mechanical properties
consistent with bulk samples and with a diffusion limited cluster aggregation
model, while excess mass on the nodes discounts the dangling fragments
hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference
Confident and sensitive phosphoproteomics using combinations of collision induced dissociation and electron transfer dissociation
We present a workflow using an ETD-optimised version of Mascot Percolator and a modified version of SLoMo (turbo-SLoMo) for analysis of phosphoproteomic data. We have benchmarked this against several database searching algorithms and phosphorylation site localisation tools and show that it offers highly sensitive and confident phosphopeptide identification and site assignment with PSM-level statistics, enabling rigorous comparison of data acquisition methods. We analysed the Plasmodium falciparum schizont phosphoproteome using for the first time, a data-dependent neutral loss-triggered-ETD (DDNL) strategy and a conventional decision-tree method. At a posterior error probability threshold of 0.01, similar numbers of PSMs were identified using both methods with a 73% overlap in phosphopeptide identifications. The false discovery rate associated with spectral pairs where DDNL CID/ETD identified the same phosphopeptide was < 1%. 72% of phosphorylation site assignments using turbo-SLoMo without any score filtering, were identical and 99.8% of these cases are associated with a false localisation rate of < 5%. We show that DDNL acquisition is a useful approach for phosphoproteomics and results in an increased confidence in phosphopeptide identification without compromising sensitivity or duty cycle. Furthermore, the combination of Mascot Percolator and turbo-SLoMo represents a robust workflow for phosphoproteomic data analysis using CID and ETD fragmentation.
Biological significance
Protein phosphorylation is a ubiquitous post-translational modification that regulates protein function. Mass spectrometry-based approaches have revolutionised its analysis on a large-scale but phosphorylation sites are often identified by single phosphopeptides and therefore require more rigorous data analysis to unsure that sites are identified with high confidence for follow-up experiments to investigate their biological significance. The coverage and confidence of phosphoproteomic experiments can be enhanced by the use of multiple complementary fragmentation methods. Here we have benchmarked a data analysis pipeline for analysis of phosphoproteomic data generated using CID and ETD fragmentation and used it to demonstrate the utility of a data-dependent neutral loss triggered ETD fragmentation strategy for high confidence phosphopeptide identification and phosphorylation site localisation
Dynamics of the Universal Area-Preserving Map Associated with Period Doubling: Hyperbolic Sets
It is known that the famous Feigenbaum-Coullet-Tresser period doubling
universality has a counterpart for area-preserving maps of {\fR}^2. A
renormalization approach has been used in \cite{EKW1} and \cite{EKW2} in a
computer-assisted proof of existence of a "universal" area-preserving map
-- a map with orbits of all binary periods 2^k, k \in \fN. In this paper, we
consider maps in some neighbourhood of and study their dynamics.
We first demonstrate that the map admits a "bi-infinite heteroclinic
tangle": a sequence of periodic points , k \in \fZ, |z_k|
\converge{{k \to \infty}} 0, \quad |z_k| \converge{{k \to -\infty}} \infty,
whose stable and unstable manifolds intersect transversally; and, for any N
\in \fN, a compact invariant set on which is homeomorphic to a
topological Markov chain on the space of all two-sided sequences composed of
symbols. A corollary of these results is the existence of {\it unbounded}
and {\it oscillating} orbits.
We also show that the third iterate for all maps close to admits a
horseshoe. We use distortion tools to provide rigorous bounds on the Hausdorff
dimension of the associated locally maximal invariant hyperbolic set: 0.7673
\ge {\rm dim}_H(\cC_F) \ge \varepsilon \approx 0.00044 e^{-1797}.$
Bacterial artificial chromosomes as analytical basis for gene transcriptional machineries
Bacterial Artificial Chromosomes (BACs) had been minimal components of various genome-sequencing projects, constituting perfect analytical basis for functional genomics. Here we describe an enhancer screening strategy in which BAC clones that cover any genomic segments of interest are modified to harbor a reporter cassette by transposon tagging, then processed to carry selected combinations of gene regulatory modules by homologous recombination mediated systematic deletions. Such engineered BAC-reporter constructs in bacterial cells are ready for efficient transgenesis in mice to evaluate activities of gene regulatory modules intact or absent in the constructs. By utilizing the strategy, we could speedily identify a critical genomic fragment for spatio-temporally regulated expression of a mouse cadherin gene whose structure is extraordinarily huge and intricate. This BAC-based methodology would hence provide a novel screening platform for gene transcriptional machineries that dynamically fluctuate during development, pathogenesis and/or evolution
Occurrence and Treatment of Bone Atrophic Non-Unions Investigated by an Integrative Approach
Recently developed atrophic non-union models are a good representation of the clinical situation in which many nonunions develop. Based on previous experimental studies with these atrophic non-union models, it was hypothesized that in order to obtain successful fracture healing, blood vessels, growth factors, and (proliferative) precursor cells all need to be present in the callus at the same time. This study uses a combined in vivo-in silico approach to investigate these different aspects (vasculature, growth factors, cell proliferation). The mathematical model, initially developed for the study of normal fracture healing, is able to capture essential aspects of the in vivo atrophic non-union model despite a number of deviations that are mainly due to simplifications in the in silico model. The mathematical model is subsequently used to test possible
treatment strategies for atrophic non-unions (i.e. cell transplant at post-osteotomy, week 3). Preliminary in vivo experiments corroborate the numerical predictions. Finally, the mathematical model is applied to explain experimental observations and
identify potentially crucial steps in the treatments and can thereby be used to optimize experimental and clinical studies in this area. This study demonstrates the potential of the combined in silico-in vivo approach and its clinical implications for the early treatment of patients with problematic fractures
Novel echocardiographic techniques to assess left atrial size, anatomy and function
Three-dimensional echocardiography (3DE) and speckle tracking echocardiography (STE) have recently applied as imaging techniques to accurately evaluate left atrial (LA) size, anatomy and function. 3DE and off-line quantification softwares, have allowed, in comparison to magnetic resonance imaging, the most time-efficient and accurate method of LA volume quantification. STE provides a non-Doppler, angle-independent and objective quantification of LA myocardial deformation. Data regarding feasibility, accuracy and clinical applications of LA analysis by 3DE and STE are rapidly gathering. This review describes the fundamental concepts of LA 3DE and STE, illustrates how to obtain respective measurements and discuss their recognized and emerging clinical applications
Unveiling novel genes upregulated by both rhBMP2 and rhBMP7 during early osteoblastic transdifferentiation of C2C12 cells
<p>Abstract</p> <p>Findings</p> <p>We set out to analyse the gene expression profile of pre-osteoblastic C2C12 cells during osteodifferentiation induced by both rhBMP2 and rhBMP7 using DNA microarrays. Induced and repressed genes were intercepted, resulting in 1,318 induced genes and 704 repressed genes by both rhBMP2 and rhBMP7. We selected and validated, by RT-qPCR, 24 genes which were upregulated by rhBMP2 and rhBMP7; of these, 13 are related to transcription (<it>Runx2, Dlx1, Dlx2, Dlx5, Id1, Id2, Id3, Fkhr1, Osx, Hoxc8, Glis1, Glis3 </it>and <it>Cfdp1</it>), four are associated with cell signalling pathways (<it>Lrp6, Dvl1, Ecsit </it>and <it>PKCδ</it>) and seven are associated with the extracellular matrix (<it>Ltbp2, Grn, Postn, Plod1, BMP1, Htra1 </it>and <it>IGFBP-rP10</it>). The novel identified genes include: <it>Hoxc8, Glis1, Glis3, Ecsit, PKCδ, LrP6, Dvl1, Grn, BMP1, Ltbp2, Plod1, Htra1 </it>and <it>IGFBP-rP10</it>.</p> <p>Background</p> <p>BMPs (bone morphogenetic proteins) are members of the TGFβ (transforming growth factor-β) super-family of proteins, which regulate growth and differentiation of different cell types in various tissues, and play a critical role in the differentiation of mesenchymal cells into osteoblasts. In particular, rhBMP2 and rhBMP7 promote osteoinduction <it>in vitro </it>and <it>in vivo</it>, and both proteins are therapeutically applied in orthopaedics and dentistry.</p> <p>Conclusion</p> <p>Using DNA microarrays and RT-qPCR, we identified both previously known and novel genes which are upregulated by rhBMP2 and rhBMP7 during the onset of osteoblastic transdifferentiation of pre-myoblastic C2C12 cells. Subsequent studies of these genes in C2C12 and mesenchymal or pre-osteoblastic cells should reveal more details about their role during this type of cellular differentiation induced by BMP2 or BMP7. These studies are relevant to better understanding the molecular mechanisms underlying osteoblastic differentiation and bone repair.</p
- …