697 research outputs found

    The homestake surface-underground scintillations: Description

    Get PDF
    Two new detectors are currently under construction at the Homestake Gold Mine a 140-ton Large Area Scintillation Detector (LASD) with an upper surface area of 130 square meters, a geometry factor (for an isotropic flux) of 1200 square meters, sr, and a depth of 4200 m.w.e.; and a surface air shower array consisting of 100 scintillator elements, each 3 square meters, spanning an area of approximately square kilometers. Underground, half of the LASD is currently running and collecting muon data; on the surface, the first section of the air shower array will begin operation in the spring of 1985. The detectors and their capabilities are described

    A New Measurement of Cosmic Ray Composition at the Knee

    Full text link
    The Dual Imaging Cerenkov Experiment (DICE) was designed and operated for making elemental composition measurements of cosmic rays near the knee of the spectrum at several PeV. Here we present the first results using this experiment from the measurement of the average location of the depth of shower maximum, , in the atmosphere as a function of particle energy. The value of near the instrument threshold of ~0.1 PeV is consistent with expectations from previous direct measurements. At higher energies there is little change in composition up to ~5 PeV. Above this energy is deeper than expected for a constant elemental composition implying the overall elemental composition is becoming lighter above the knee region. These results disagree with the idea that cosmic rays should become on average heavier above the knee. Instead they suggest a transition to a qualitatively different population of particles above 5 PeV.Comment: 7 pages, LaTeX, two eps figures, aas2pp4.sty and epsf.sty included, accepted by Ap.J. Let

    Constraints on Gamma-ray Emission from the Galactic Plane at 300 TeV

    Get PDF
    We describe a new search for diffuse ultrahigh energy gamma-ray emission associated with molecular clouds in the galactic disk. The Chicago Air Shower Array (CASA), operating in coincidence with the Michigan muon array (MIA), has recorded over 2.2 x 10^{9} air showers from April 4, 1990 to October 7, 1995. We search for gamma rays based upon the muon content of air showers arriving from the direction of the galactic plane. We find no significant evidence for diffuse gamma-ray emission, and we set an upper limit on the ratio of gamma rays to normal hadronic cosmic rays at less than 2.4 x 10^{-5} at 310 TeV (90% confidence limit) from the galactic plane region: (50 degrees < l < 200 degrees); -5 degrees < b < 5 degrees). This limit places a strong constraint on models for emission from molecular clouds in the galaxy. We rule out significant spectral hardening in the outer galaxy, and conclude that emission from the plane at these energies is likely to be dominated by the decay of neutral pions resulting from cosmic rays interactions with passive target gas molecules.Comment: Astrophysical Journal, submitted, 11 pages, AASTeX Latex, 3 Postscript figure

    The Grizzly, November 12, 2015

    Get PDF
    Highlighting a New Trend on Campus • Making Connections: Ursinus Prepares to Break Ground on a Structure Between Pfahler and Thomas • Acclaimed Literary Critic to Give Talk on Campus • Ursinus Brings Top Lawyer Aboard in New Position • International Perspective: How One Student Uses Dance to Connect Ethiopia and Ursinus • Can You Really Netflix and Chill Without Killing Your Grades? • Opinions: Are You a White Feminist?; Bridge of Spies • Defensive Lineman Unleashes Passion for Music • Field Hockey Upsets F&M for Titlehttps://digitalcommons.ursinus.edu/grizzlynews/1677/thumbnail.jp

    Multiwavelength Observations of Markarian 421 in March 2001: an Unprecedented View on the X-ray/TeV Correlated Variability

    Get PDF
    (Abridged) We present a detailed analysis of week-long simultaneous observations of the blazar Mrk421 at 2-60 keV X-rays (RXTE) and TeV gamma-rays (Whipple and HEGRA) in 2001. The unprecedented quality of this dataset enables us to establish firmly the existence of the correlation between the TeV and X-ray luminosities, and to start unveiling some of its more detailed characteristics, in particular its energy dependence, and time variability. The source shows strong, highly correlated variations in X-ray and gamma-ray. No evidence of X-ray/gamma-ray interband lag is found on the full week dataset (<3 ks). However, a detailed analysis of the March 19 flare reveals that data are not consistent with the peak of the outburst in the 2-4 keV X-ray and TeV band being simultaneous. We estimate a 2.1+/-0.7 ks TeV lag. The amplitudes of the X-ray and gamma-ray variations are also highly correlated, and the TeV luminosity increases more than linearly w.r.t. the X-ray one. The strong correlation supports the standard model in which a unique electrons population produces the X-rays by synchrotron radiation and the gamma-ray component by inverse Compton scattering. However, for the individual best observed flares the gamma-ray flux scales approximately quadratically w.r.t. the X-ray flux, posing a serious challenge to emission models for TeV blazars. Rather special conditions and/or fine tuning of the temporal evolution of the physical parameters of the emission region are required in order to reproduce the quadratic correlation.Comment: Correction to authorship. Minor editorial changes to text, figures, references. 22 pages (emulateapj), 12 figures (47 postscript files) Published in ApJ, 2008 April 20 (ADS: 2008ApJ...677..906F

    A Multi-Component Measurement of the Cosmic Ray Composition Between 10^{17} eV and 10^{18} eV

    Get PDF
    The average mass composition of cosmic rays with primary energies between 101710^{17}eV and 101810^{18}eV has been studied using a hybrid detector consisting of the High Resolution Fly's Eye (HiRes) prototype and the MIA muon array. Measurements have been made of the change in the depth of shower maximum, XmaxX_{max}, and in the change in the muon density at a fixed core location, ρμ(600m)\rho_\mu(600m), as a function of energy. The composition has also been evaluated in terms of the combination of XmaxX_{max} and ρμ(600m)\rho_\mu(600m). The results show that the composition is changing from a heavy to lighter mix as the energy increases.Comment: 14 pages including 3 figures in revtex epsf style, submited to PR
    corecore