1,984 research outputs found

    Effects of anisotropy in spin molecular-orbital coupling on effective spin models of trinuclear organometallic complexes

    Get PDF
    We consider layered decorated honeycomb lattices at two-thirds filling, as realized in some trinuclear organometallic complexes. Localized S=1S=1 moments with a single-spin anisotropy emerge from the interplay of Coulomb repulsion and spin molecular-orbit coupling (SMOC). Magnetic anisotropies with bond dependent exchange couplings occur in the honeycomb layers when the direct intracluster exchange and the spin molecular-orbital coupling are both present. We find that the effective spin exchange model within the layers is an XXZ + 120^\circ honeycomb quantum compass model. The intrinsic non-spherical symmetry of the multinuclear complexes leads to very different transverse and longitudinal spin molecular-orbital couplings, which greatly enhances the single-spin and exchange coupling anisotropies. The interlayer coupling is described by a XXZ model with anisotropic biquadratic terms. As the correlation strength increases the systems becomes increasingly one-dimensional. Thus, if the ratio of SMOC to the interlayer hopping is small this stabilizes the Haldane phase. However, as the ratio increases there is a quantum phase transition to the topologically trivial `DD-phase'. We also predict a quantum phase transition from a Haldane phase to a magnetically ordered phase at sufficiently strong external magnetic fields.Comment: 22 pages, 11 figures. Final version of paper to be published in PRB. Important corrections to appendix

    Heisenberg and Dzyaloshinskii-Moriya interactions controlled by molecular packing in tri-nuclear organometallic clusters

    Get PDF
    Motivated by recent synthetic and theoretical progress we consider magnetism in crystals of multi-nuclear organometallic complexes. We calculate the Heisenberg symmetric exchange and the Dzyaloshinskii-Moriya antisymmetric exchange. We show how, in the absence of spin-orbit coupling, the interplay of electronic correlations and quantum interference leads to a quasi-one dimensional effective spin model in a typical tri-nuclear complex, Mo3_3S7_7(dmit)3_3, despite its underlying three dimensional band structure. We show that both intra- and inter-molecular spin-orbit coupling can cause an effective Dzyaloshinskii-Moriya interaction. Furthermore, we show that, even for an isolated pair of molecules the relative orientation of the molecules controls the nature of the Dzyaloshinskii-Moriya coupling. We show that interference effects also play a crucial role in determining the Dzyaloshinskii-Moriya interaction. Thus, we argue, that multi-nuclear organometallic complexes represent an ideal platform to investigate the effects of Dzyaloshinskii-Moriya interactions on quantum magnets.Comment: This update incorporates the corrections described in a recently submitted erratum. Changes are confined to sections IV.A and B. The conclusions of the paper are unchanged. 12 + 4 pages, 9 figure

    Spin-orbit coupling in {Mo3_3S7_7(dmit)3_3}

    Get PDF
    Spin-orbit coupling in crystals is known to lead to unusual direction dependent exchange interactions, however understanding of the consequeces of such effects in molecular crystals is incomplete. Here we perform four component relativistic density functional theory computations on the multi-nuclear molecular crystal {Mo3_3S7_7(dmit)3_3} and show that both intra- and inter-molecular spin-orbit coupling are significant. We determine a long-range relativistic single electron Hamiltonian from first principles by constructing Wannier spin-orbitals. We analyse the various contributions through the lens of group theory. Intermolecular spin-orbit couplings like those found here are known to lead to quantum spin-Hall and topological insulator phases on the 2D lattice formed by the tight-binding model predicted for a single layer of {Mo3_3S7_7(dmit)3_3}

    Buruli toxin genes decoded

    Full text link

    On-orbit assembly using superquadric potential fields

    Get PDF
    The autonomous on-orbit assembly of a large space structure is presented using a method based on superquadric artificial potential fields. The final configuration of the elements which form the structure is represented as the minimum of some attractive potential field. Each element of the structure is then considered as presenting an obstacle to the others using a superquadric potential field attached to the body axes of the element. A controller is developed which ensures that the global potential field decreases monotonically during the assembly process. An error quaternion representation is used to define both the attractive and superquadric obstacle potentials allowing the final configuration of the elements to be defined through both relative position and orientation. Through the use of superquadric potentials, a wide range of geometric objects can be represented using a common formalism, while collision avoidance can make use of both translational and rotation maneuvers to reduce total maneuver cost for the assembly process

    Buckling loads of stayed columns using the finite element method.

    Get PDF
    Dept. of Civil and Environmental Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1975 .K49. Source: Masters Abstracts International, Volume: 40-07, page: . Thesis (M.A.Sc.)--University of Windsor (Canada), 1975

    A comparison of human brain dissection by drill versus saw on nucleic acid quality

    Get PDF
    This study examined the effect of two dissection techniques on the quality of human brain specimens. Frozen cerebellar samples were obtained from postmortem brains of 10 subjects free from neurological and psychiatric disease. These tissues were tested for RNA and DNA concentration and quality after being dissected with either an electric dental drill or a small handsaw. RNA and DNA were extracted separately from each sample, and the concentrations and quality of each were measured. We found that dissection technique does not significantly affect RNA or DNA quality/yield. RNA and DNA yields, as well as RNA integrity showed no significant differences between the two dissection techniques. Therefore, these results support the use of a high-speed hand-held electric dental drill as an efficient and anatomically precise means of human brain dissection without compromising tissue quality. Published by Elsevier B.V

    Are You Tampering With My Data?

    Full text link
    We propose a novel approach towards adversarial attacks on neural networks (NN), focusing on tampering the data used for training instead of generating attacks on trained models. Our network-agnostic method creates a backdoor during training which can be exploited at test time to force a neural network to exhibit abnormal behaviour. We demonstrate on two widely used datasets (CIFAR-10 and SVHN) that a universal modification of just one pixel per image for all the images of a class in the training set is enough to corrupt the training procedure of several state-of-the-art deep neural networks causing the networks to misclassify any images to which the modification is applied. Our aim is to bring to the attention of the machine learning community, the possibility that even learning-based methods that are personally trained on public datasets can be subject to attacks by a skillful adversary.Comment: 18 page
    corecore