463 research outputs found

    Computing Economic Equilibria through Nonsmooth Optimization

    Get PDF
    In the first section the problem of nonsmooth optimization is described in general terms, setting the precise hypothesis in mathematical language. Section 2 describes the principles of an example which arises in the context of the linkage of national models of food and agriculture. The general methodology is presented in Section 3, where the algorithm of solution is outlined. Section 4 reports on an extensive set of numerical experiments, both on problems known in the literature, and on the example of Section 2. Finally the paper concludes with some remarks about improvements of the algorithm, which motivate further research on the subject

    Simulating the Socio-Economic and Biogeophysical Driving Forces of Land-Use and Land-Cover Change: The IIASA Land-Use Change Model

    Get PDF
    In 1995, a new project Modeling Land-Use and Land-Cover Changes in Europe and Northern Asia (LUC) was established at IIASA with the objective of analyzing the spatial characteristics, temporal dynamics, and environmental consequences of land-use and land-cover changes that have occurred in Europe and Northern Asia over the period 1900 to 1990 as a result of a range of socio-economic and biogeophysical driving forces. The analysis will then be used to project plausible future changes in land use and land cover for the period 1990 to 2050 under different assumptions of future demographic, economic, technological, social and political development. The study region, Europe and Northern Asia, has been selected because of its diversity in social, economic and political organization, the rapid changes in recent history, and the significant implications for current and future land-use and land-cover change. Land-cover change is driven by a multitude of processes. Natural processes, such as vegetation dynamics, involve alterations in cover due to natural changes in climate and soils. However, changes of land cover driven by anthropogenic forcing are currently the most important and most rapid of all changes (Turner et al. 1990). Therefore, any sound effort to project the future state of land cover must consider the determinants of human requirements and activities, e.g., demand for land-based products such as food, fiber and fuel, or use of land for recreation. In the past, major land-cover conversions have occurred as a consequence of deforestation to convert land for crop and livestock production; removal of wood for fuel and timber; conversion of wetlands to agricultural and other uses; conversion of land for habitation, infrastructure and industry; and conversion of land for mineral extraction (Turner et al. 1993). These human-induced conversions of land cover, particularly during the past two centuries, have resulted in a net release of CO2 to the atmosphere, changes in the characteristics of land surfaces (e.g., albedo and roughness), and decreased biodiversity. More subtle processes, termed land-cover modifications, affect the character of the land cover without changing its overall classification. For instance, land-cover degradation through erosion, overgrazing, desertification, salinization and acidification, is currently considered a major environmental problem. Although the effects of land-cover modifications may be small at local scales, their aggregate impact may be considerable. For example, use of fertilizers locally has no significance for atmospheric concentrations of greenhouse gases. However, when practiced frequently in many locations, nitrogen fertilizer can make a significant contribution to emissions of nitrous oxide (N2O) globally. The implementation of a comprehensive land-use change model poses a number of methodological challenges. These include the complexity of the issues involved and the large number of interacting agents and factors; the nonlinear interactions between prices, the supply of and the demand for land-based commodities and resources; the importance of intertemporal aspects; the intricacy of biogeophysical feedbacks; and the essential role of uncertainty in the overall evaluation of strategies. The interaction mechanisms between biophysical cycles and economic processes have mainly been studied in dynamic simulation models that follow recursive chains of causation, where the past and present events determine what will happen tomorrow. Not surprisingly, many of these studies have led to dramatic predictions, basically because the agents whose behavior is described within the model are themselves assumed to be unable to predict at all. By contrast, in micro-economics it is usually assumed that agents do have the capacity to make informed predictions and to plan so as to avoid the probability of disaster in the future. However, even full information and rationality of individual choice are not always sufficient to avoid disaster. The coordination mechanisms that prevail among economic agents often tend to be of decisive importance. The aim of this paper is to summarize the LUC project approach and to extend our earlier writings on modeling of land-use and land-cover change dynamics. We discuss the adequacy and applicability of welfare analysis as a conceptual framework for the LUC project at IIASA. We recognize from the outset the complexity of socio-economic and environmental driving forces and the fundamental uncertainties involved in their spatial and temporal interactions (and outcomes). Unlike physical particles, economic agents have the ability to anticipate, and they possess the freedom to change their behavior. This inherent unpredictability, in particular the multiplicity of possible outcomes, calls for a normative approach, and for comparative policy analysis rather than exact prediction. Therefore, we adopt an approach that enables the explicit representation of various policy measures, thus providing a means to search for "better futures", i.e., for trajectories of future development that may alleviate environmental stresses while improving human welfare

    Direct demonstration of ATP-dependent release of SecA from a translocating preprotein by surface plasmon resonance

    Get PDF
    Translocase mediates the transport of preproteins across the inner membrane of Escherichia coli. SecA binds with high affinity to the membrane-embedded protein-conducting SecYEG complex and serves as both a receptor for secretory proteins and as an ATP-driven molecular motor. Cycles of ATP binding and hydrolysis by SecA drive the progressive movement of the preprotein across the membrane. Surface plasmon resonance allows an online monitoring of protein interactions. Here we report on the kinetic analysis of the interaction between SecA and the membrane-embedded SecYEG complex. Immobilization of membrane vesicles containing overproduced SecYEG on the Biacore Pioneer L1 chip allows the detection of high affinity SecA binding to the SecYEG complex and online monitoring of the translocation of the secretory protein proOmpA. SecA binds tightly to the SecYEG . proOmpA complex and is released only upon ATP hydrolysis. The results provide direct evidence for a model in which SecA cycles at the SecYEG complex during translocation

    Quality of life after esophageal replacement in children

    Get PDF
    Purpose: Assessing quality of life (QoL) after esophageal replacement (ER) for long gap esophageal atresia (LGEA). Methods: All patients after ER for LGEA with gastric pull-up (GPU n = 9) or jejunum interposition (JI n = 14) at the University Medical Center Groningen and Utrecht (1985–2007) were included. QoL was assessed with 1) gastrointestinal-related QoL using the Gastrointestinal Quality of Life Index (GIQLI)), 2) general QoL (Child Health questionnaire CHF87-BREF (children)/World Health Organization questionnaire WHOQOL-BREF (adults)), and 3) health-related QoL (HRQoL) (TNO AZL TACQoL/TAAQoL). Association of morbidity (heartburn, dysphagia, dyspnea on exertion, recurrent cough) and (HR)QoL was evaluated. Results: Six patients after GPU (75%) and eight patients after JI (57%) responded to the questionnaires (mean age 15.7, SD 5.9, 12 male, two female). Mean gastrointestinal, general and health-related QoL total scores of the patients were comparable to healthy controls. However, young adults reported a worse physical functioning (p = 0.02) but better social functioning compared to peers (p = 0.01). Morbidity was not associated with significant differences in (HR)QoL. Conclusions: With the current validated QoL most patients after ER with GPU and JI for LGEA have normal generic and disease specific QoL scores. Postoperative morbidity does not seem to influence (HR)QoL. Type of Study: Prognosis Study. Level of evidence: III

    Comparison of estimated energy intake in children using a Web-based Dietary Assessment Software with accelerometer-estimated energy expenditure in children

    Get PDF
    Background: The OPUS (Optimal well-being, development and health for Danish children through a healthy New Nordic Diet) project carried out a school meal study to assess the impact of a New Nordic Diet (NND). The random controlled trial involved 834 children aged 8–11 in nine local authority schools in Denmark. Dietary assessment was carried out using a program known as WebDASC (Web-based Dietary Assessment Software for Children) to collect data from the children. Objective: To compare the energy intake (EI) of schoolchildren aged 8–11 estimated using the WebDASC system against the total energy expenditure (TEE) as derived from accelerometers worn by the children during the same period. A second objective was to evaluate the WebDASC's usability. Design: Eighty-one schoolchildren took part in what was the pilot study for the OPUS project, and they recorded their total diet using WebDASC and wore an accelerometer for two periods of seven consecutive days: at baseline, when they ate their usual packed lunches and at intervention when they were served the NND. EI was estimated using WebDASC, and TEE was calculated from accelerometer-derived activity energy expenditure, basal metabolic rate, and diet-induced thermogenesis. WebDASC's usability was assessed using a questionnaire. Parents could help their children record their diet and answer the questionnaire. Results: Evaluated against TEE as derived from the accelerometers worn at the same time, the WebDASC performed just as well as other traditional methods of collecting dietary data and proved both effective and acceptable with children aged 8–11, even with perhaps less familiar foods of the NND. Conclusions: WebDASC is a useful method that provided a reasonably accurate measure of EI at group level when compared to TEE derived from accelerometer-determined physical activity in children. WebDASC will benefit future research in this area

    [18F]FDG and [18F]NaF as PET markers of systemic atherosclerosis progression:A longitudinal descriptive imaging study in patients with type 2 diabetes mellitus

    Get PDF
    BACKGROUND: While [18F]-fluordeoxyglucose ([18F]FDG) uptake is associated with arterial inflammation, [18F]-sodium fluoride ([18F]NaF) is a marker for arterial micro-calcification. We aimed to investigate the prospective correlation between both PET markers over time and whether they are prospectively ([18F]FDG) and retrospectively ([18F]NaF) related to progression of systemic arterial disease in a longitudinal study in patients with type 2 diabetes mellitus (T2DM). METHODS: Baseline [18F]FDG PET/Low Dose (LD) Computed Tomography (CT) scans of ten patients with early T2DM without cardiovascular history (70% men, median age 63 years) were compared with five-year follow-up [18F]NaF/LDCT scans. Systemic activity was expressed as mean target-to-background ratio (meanTBR) by dividing the maximal standardized uptake value (SUVmax) of ten arteries by SUVmean of the caval vein. CT-assessed macro-calcifications were scored visually and expressed as calcified plaque (CP) score. Arterial stiffness was assessed with carotid-femoral pulse wave velocity (PWV). Five-year changes were expressed absolutely with delta (Δ) and relatively with %change. RESULTS: Baseline meanTBR[18F]FDG was strongly correlated with five-year follow-up meanTBR[18F]NaF (r = 0.709, P = .022). meanTBR[18F]NaF correlated positively with ΔCPscore, CPscore at baseline, and follow-up (r = 0.845, P = .002 and r = 0.855, P = .002, respectively), but not with %change in CPscore and PWV. CONCLUSION: This proof-of-concept study demonstrated that systemic arterial inflammation is an important pathogenetic factor in systemic arterial micro-calcification development

    Aorto-Iliac Artery Calcification and Graft Outcomes in Kidney Transplant Recipients

    Get PDF
    While the association of vascular calcification with inferior patient outcomes in kidney transplant recipients is well-established, the association with graft outcomes has received less attention. With this dual-centre cohort study, we aimed to determine the clinical impact of recipient pre-transplant aorto-iliac calcification, measured on non-contrast enhanced computed tomography (CT)-imaging within three years prior to transplantation (2005–2018). We included 547 patients (61.4% male, age 60 (interquartile range 51–68) years), with a median follow-up of 3.1 (1.4–5.2) years after transplantation. The aorto-iliac calcification score (CaScore) was inversely associated with one-year estimated-glomerular filtration rate (eGFR) in univariate linear regression analysis (standard β −3.3 (95% CI −5.1 to −1.5, p < 0.0001), but not after adjustment for potential confounders, including donor and recipient age (p = 0.077). In multivariable Cox regression analyses, a high CaScore was associated with overall graft failure (p = 0.004) and death with a functioning graft (p = 0.002), but not with death-censored graft failure and graft function decline. This study demonstrated that pre-transplant aorto-iliac calcification is associated with one-year eGFR in univariate, but not in multivariable linear regression analyses. Moreover, this study underlines that transplantation in patients with a high CaScore does not result in earlier transplant function decline or worse death censored graft survival, although ongoing efforts for the prevention of death with a functioning graft remain essential

    Aorto-Iliac Artery Calcification Prior to Kidney Transplantation

    Get PDF
    As vascular calcification is common in kidney transplant candidates, aorto-iliac vessel imaging is performed for surgical planning. The aim of the present study was to investigate whether a novel non-contrast enhanced computed tomography-based quantification technique for aorto-iliac calcification can be used for cardiovascular risk stratification prior to kidney transplantation. In this dual-center cohort study, we measured the aorto-iliac calcium score (CaScore) of 547 patients within three years prior to transplantation (2005-2018). During a median (interquartile range) follow-up of 3.1 (1.4, 5.2) years after transplantation, 80 (14.7%) patients died, of which 32 (40.0%) died due to cardiovascular causes, and 84 (15.5%) patients had a cardiovascular event. Kaplan-Meier survival curves showed significant differences between the CaScore tertiles for cumulative overall-survival (Log-rank testp<0.0001), cardiovascular survival (p<0.0001), and cardiovascular event-free survival (p<0.001). In multivariable Cox regression, the aorto-iliac CaScore was associated with all-cause mortality (hazard ratio 1.53, 95%CI 1.14-2.06,p= 0.005), cardiovascular mortality (2.04, 1.20-3.45,p= 0.008), and cardiovascular events (1.35, 1.01-1.80,p= 0.042). These independent associations of the aorto-iliac CaScore with the outcome measures can improve the identification of patients at risk for (cardiovascular) death and those who could potentially benefit from stringent cardiovascular monitoring to improve their prognosis after transplantation

    Severely increased albuminuria in patients with type 2 diabetes mellitus is associated with increased subclinical atherosclerosis in femoral arteries with Na [<sup>18</sup>F]F activity as a proxy - The DETERMINE study

    Get PDF
    Background and aims: Sodium [18F]fluoride (Na [18F]F) positron emission tomography imaging allows detailed visualization of early arterial micro-calcifications. This study aims to investigate atherosclerosis manifested by micro-calcification, macro-calcification, and aortic stiffness in patients with type 2 diabetes mellitus (T2DM) with and without albuminuria and severely decreased kidney function. Methods: A cohort was stratified in four groups (N = 10 per group), based on KDIGO categories (G1-5 A1-3). G1-2A1 non-diabetic controls (median [IQR] estimated glomerular filtration rate (eGFR) in mL/min/1.73 m2 91 [81–104]), G1-2A1 with T2DM (eGFR 87 [84–93], and albumin-creatinin-ratio (ACR) in mg/mmol 0.35 [0.25–0.75]), G1-2A3 with T2DM (eGFR 85 [60–103], and ACR 74 [62–122], and G4A3 with T2DM (eGFR 19 [13-27] and ACR 131 [59–304]). Results: Na [18F]F femoral artery grading score differed significantly in the groups with the highest Na [18F]F activity in A3 groups with T2DM (G1-2A3 with T2DM 228 [100–446] and G4A3 with T2DM 198 [113–578]) from the lowest groups of the G1-2A1 with T2DM (33 [0–93]) and in G1-2A1 non-diabetic controls (75 [0–200], p = 0.001). Aortic Na [18F]F activity and femoral artery computed tomography (CT)-assessed macro-calcification was increased in G4A3 with T2DM compared with G1-2A1 with T2DM (47.5 [33.8–73.8] vs. 17.5 [8.8–27.5] (p = 0.006) and 291 [170–511] vs. 12.2 [1.41–44.3] mg (p = 0.032), respectively). Carotid-femoral pulse wave velocity (PWV)-assessed aortic stiffness was significantly higher in both A3 groups with T2DM compared with G1-2A1 with T2DM (11.15 and 12.35 vs. 8.86 m/s, respectively (p = 0.009)). Conclusions: This study indicates that the presence of severely increased albuminuria in patients with T2DM is cross-sectionally associated with subclinical arterial disease in terms of micro-calcification and aortic stiffness. Additional decrease in kidney function was associated with advanced macro-calcifications.</p
    • …
    corecore