4,467 research outputs found
Recommended from our members
Analysis of fuzzy clustering and a generic fuzzy rule-based image segmentation technique
Many fuzzy clustering based techniques when applied to image segmentation do not incorporate spatial relationships of the pixels, while fuzzy rule-based image segmentation techniques are generally application dependent. Also for most of these techniques, the structure of the membership functions is predefined and parameters have to either automatically or manually derived. This paper addresses some of these issues by introducing a new generic fuzzy rule based image segmentation (GFRIS) technique, which is both application independent and can incorporate the spatial relationships of the pixels as well. A qualitative comparison is presented between the segmentation results obtained using this method and the popular fuzzy c-means (FCM) and possibilistic c-means (PCM) algorithms using an empirical discrepancy method. The results demonstrate this approach exhibits significant improvements over these popular fuzzy clustering algorithms for a wide range of differing image types
Recommended from our members
Fuzzy Image Segmentation using Suppressed Fuzzy C-Means Clustering
Clustering algorithms are highly dependent on the features used and the type of the objects in a particular image. By considering object similar surface variations (SSV) as well as the arbitrariness of the fuzzy c-means (FCM) algorithm for pixellocation, a fuzzy image segmentation considering object surface similarity (FSOS) algorithm was developed, but it was unable to segment objects having SSV satisfactorily. To improve the effectiveness of FSOS in segmenting objects with SSV, thispaper introduces a new fuzzy image segmentation using suppressed fuzzy c-means clustering (FSSC) algorithm, which directly considers object SSV and incorporates the use of suppressed-FCM (SFCM) using pixel location. The algorithmalso perceptually selects the threshold within the range of human visual perception. Both qualitative and quantitative resultsconfirm the improved segmentation performance of FSSC compared with other algorithms including FSOS, FCM,possibilistic c-means (PCM) and SFCM for many different images
Recommended from our members
A survey of fuzzy rule-based image segmentation techniques
This paper describes the various fuzzy rule based techniques for image segmentation. Fuzzy rule based segmentation techniques can incorporate domain expert knowledge and manipulate numerical as well as linguistic data. They are also capable of drawing partial inference using fuzzy IF-THEN rules. For these reasons they have been extensively applied in medical imaging. But these rules are application domain specific and it is very difficult to define the rules either manually or automatically so that the segementation can be achieved successfully
Fuzzy Clustering for Image Segmentation Using Generic Shape Information
The performance of clustering algorithms for image segmentation are highly sensitive to the features used and types of objects in the image, which ultimately limits their generalization capability. This provides strong motivation to investigate integrating shape information into the clustering framework to improve the generality of these algorithms. Existing shape-based clustering techniques mainly focus on circular and elliptical clusters and so are unable to segment arbitrarily-shaped objects. To address this limitation, this paper presents a new shape-based algorithm called fuzzy clustering for image segmentation using generic shape information (FCGS), which exploits the B-spline representation of an object's shape in combination with the Gustafson-Kessel clustering algorithm. Qualitative and quantitative results for FCGS confirm its superior segmentation performance consistently compared to well-established shape-based clustering techniques, for a wide range of test images comprising various regular and arbitrary-shaped objects
Recommended from our members
Image segmentation using fuzzy clustering incorporating spatial information
Effective image segmentation cannot be achieved for a fuzzy clustering algorithm based on using only pixel intensity, pixel locations or a combination of the two. Often if both pixel intensity and pixel location are combined, one feature tends to minimize the effect of other, thus degrading the resulting segmentation. This paper directly addresses this problem by introducing a new algorithm called image segmentation using fuzzy clustering incorporating spatial information (FCSI), which merges the segmented results independently generated by fuzzy clustering-based on pixel intensity and the location of pixels. Qualitative results show the superiority of the FCSI algorithm compared with the fuzzy c-means (FCM) algorithm for all three alternatives, clustering using only pixel intensity, pixel locations and a combination of the two
Recommended from our members
Fuzzy image segmentation using location and intensity information
The segmentation results of any clustering algorithm are very sensitive to the features used in the similarity measure and the object types, which reduce the generalization capability of the algorithm. The previously developed algorithm called image segmentation using fuzzy clustering incorporating spatial information (FCSI) merged the independently segmented results generated by fuzzy clustering-based on pixel intensity and pixel location. The main disadvantages of this algorithm are that a perceptually selected threshold does not consider any semantic information and also produces unpredictable segmentation results for objects (regions) covering the entire image. This paper directly addresses these issues by introducing a new algorithm called fuzzy image segmentation using location and intensity (FSLI) by modifying the original FCSI algorithm. It considers the topological feature namely, connectivity and the similarity based on pixel intensity and surface variation. Qualitative and quantitative results confirm the considerable improvements achieved using the FSLI algorithm compared with FCSI and the fuzzy c-means (FCM) algorithm for all three alternatives, namely clustering using only pixel intensity, pixel location and a combination of the two, for a range of sample of images
Recommended from our members
Fuzzy image segmentation of generic shaped clusters
The segmentation performance of any clustering algorithm is very sensitive to the features in an image, which ultimately restricts their generalisation capability. This limitation was the primary motivation in our investigation into using shape information to improve the generality of these algorithms. Fuzzy shape-based clustering techniques already consider ring and elliptical profiles in segmentation, though most real objects are neither ring nor elliptically shaped. This paper addresses this issue by introducing a new shape-based algorithm called fuzzy image segmentation of generic shaped clusters (FISG) that incorporates generic shape information into the framework of the fuzzy c-means (FCM) algorithm. Both qualitative and quantitative analyses confirm the superiority of FISG compared to other shape-based fuzzy clustering methods including, Gustafson-Kessel algorithm, ring-shaped, circular shell, c-ellipsoidal shells and elliptic ring-shaped clusters. The new algorithm has also been shown to be application independent so it can be applied in areas such as video object plane segmentation in MPEG-4 based coding
- …