112 research outputs found

    Design and modeling of a novel damage-free steel column base

    Get PDF
    Column bases are fundamental components of a steel frame. However their design has not yet received appropriate attention. Conventional steel column bases cannot be easily repaired if damaged and exhibit difficult-to-predict and simulate stiffness, strength and hysteretic behaviour. This paper proposes a novel demountable and fully repairable column base for resilient steel buildings. The new column base isolates damage in easy-to-replace structural elements with the goal of minimizing repair time and disruption of the building service in the aftermath of a strong earthquake. Moreover, it can be easily constructed and deconstructed to enable sustainable steel frame designs. It provides significant flexibility in the design, with rotational stiffness and moment resistance that can be independently tuned. It has self-centering capability for reducing residual drifts. The paper presents design rules, an analytical hysteretic model and a 3D finite element model for the new column base

    Self-centering steel column base with metallic energy dissipation devices

    Get PDF
    Column bases of seismic-resistant steel frames are typically designed as full-strength to ensure that plastic hinges develop in the bottom end of the first-storey columns. Alternatively, column bases may be designed as partial-strength and dissipate energy through inelastic deformations in their main components (i.e., base plate, steel anchor rods). Both design philosophies result in difficult-to-repair damage and residual drifts. Moreover, the second design philosophy results in complex hysteretic behaviour with strength and stiffness deterioration. This paper proposes a partial-strength low-damage self-centering steel column base. The column base provides flexibility in the design as its rotational stiffness and moment resistance can be independently tuned. The paper presents an analytical model that predicts the stiffness, strength, and hysteretic behaviour of the column base. In addition, a design procedure and detailed finite element models are presented. The paper evaluates the effectiveness of the column base by carrying out nonlinear dynamic analyses on a prototype steel building designed as post-tensioned self-centering moment-resisting frame. The results demonstrate the potential of the column base to reduce the residual first-storey drifts and protect the first-storey columns from yielding.</p

    Self-guided wakefield experiments driven by petawatt class ultra-short laser pulses

    Full text link
    We investigate the extension of self-injecting laser wakefield experiments to the regime that will be accessible with the next generation of petawatt class ultra-short pulse laser systems. Using linear scalings, current experimental trends and numerical simulations we determine the optimal laser and target parameters, i.e. focusing geometry, plasma density and target length, that are required to increase the electron beam energy (to > 1 GeV) without the use of external guiding structures.Comment: 15 pages, 8 figure

    Laser wakefield acceleration with high-power, few-cycle mid-IR lasers

    Get PDF
    The study of laser wakefield electron acceleration (LWFA) using mid-IR laser drivers is a promising path for future laser driven electron accelerators, when compared to traditional near-IR laser drivers operating at 0.8-1 mu m central wavelength (lambda(laser)), as the necessary vector potential (a(0)) for electron injection can be achieved with smaller laser powers due to the linear dependence on lambda(laser). In this work, we perform 2D PIC simulations on LWFA using few-cycle, high power (5-15 TW) laser systems with lambda(laser) ranging from 0.88 to 10 mu m. Such fewcycle systems are currently under development, aiming at Gas High Harmonics Generation applications, where the favorable lambda(2)(laser) scaling extends the range of the XUV photon energies. We keep a(0) and n(e)/n(cr) (n(e) being the plasma density and n(cr) the critical density for each lambda(laser)) as common denominators in our simulations, allowing for comparisons between drivers with different lambda(laser), with respect to the accelerated electron beam energy, charge and conversion efficiency. While the electron energies are mainly dominated by the plasma dynamics, the laser to electron beam energy conversion efficiency shows significant enhancement with longer wavelength laser drivers. (c) 2018 Elsevier B.V. All rights reserved

    A laser-plasma accelerator driven by two-color relativistic femtosecond laser pulses

    Get PDF
    A typical laser-plasma accelerator (LPA) is driven by a single, ultrarelativistic laser pulse from terawatt- or petawatt-class lasers. Recently, there has been some theoretical work on the use of copropagating two-color laser pulses (CTLP) for LPA research. Here, we demonstrate the first LPA driven by CTLP where we observed substantial electron energy enhancements. Those results have been further confirmed in a practical application, where the electrons are used in a bremsstrahlung-based positron generation configuration, which led to a considerable boost in the positron energy as well. Numerical simulations suggest that the trailing second harmonic relativistic laser pulse is capable of sustaining the acceleration structure for much longer distances after the preceding fundamental pulse is depleted in the plasma. Therefore, our work confirms the merits of driving LPAs by two-color pulses and paves the way toward a downsizing of LPAs, making their potential applications in science and technology extremely attractive and affordable

    A laser-plasma accelerator driven by two-color relativistic femtosecond laser pulses

    Get PDF
    A typical laser-plasma accelerator (LPA) is driven by a single, ultrarelativistic laser pulse from terawatt- or petawatt-class lasers. Recently, there has been some theoretical work on the use of copropagating two-color laser pulses (CTLP) for LPA research. Here, we demonstrate the first LPA driven by CTLP where we observed substantial electron energy enhancements. Those results have been further confirmed in a practical application, where the electrons are used in a bremsstrahlung-based positron generation configuration, which led to a considerable boost in the positron energy as well. Numerical simulations suggest that the trailing second harmonic relativistic laser pulse is capable of sustaining the acceleration structure for much longer distances after the preceding fundamental pulse is depleted in the plasma. Therefore, our work confirms the merits of driving LPAs by two-color pulses and paves the way toward a downsizing of LPAs, making their potential applications in science and technology extremely attractive and affordable

    Controlling the spectrum of x-rays generated in a laser-plasma accelerator by tailoring the laser wavefront

    Get PDF
    By tailoring the wavefront of the laser pulse used in a laser-wakefield accelerator, we show that the properties of the x-rays produced due to the electron beam's betatron oscillations in the plasma can be controlled. By creating a wavefront with coma, we find that the critical energy of the synchrotron-like x-ray spectrum can be significantly increased. The coma does not substantially change the energy of the electron beam, but does increase its divergence and produces an energy-dependent exit angle, indicating that changes in the x-ray spectrum are due to an increase in the electron beam's oscillation amplitude within the wakefield.Comment: 7 pages, 2 figures, submitted to Appl. Phys. Let

    High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source

    Get PDF
    High-resolution microcomputed tomography with benchtop X-ray sources requires long scan times because of the heat load limitation on the anode. We present an alternative, high-brightness plasma-based X-ray source that does not suffer from this restriction. A demonstration of tomography of a centimeter-scale complex organism achieves equivalent quality to a commercial scanner. We will soon be able to record such scans in minutes, rather than the hours required by conventional X-ray tubes
    corecore