17,860 research outputs found
Multiple Hypothesis Testing in Pattern Discovery
The problem of multiple hypothesis testing arises when there are more than
one hypothesis to be tested simultaneously for statistical significance. This
is a very common situation in many data mining applications. For instance,
assessing simultaneously the significance of all frequent itemsets of a single
dataset entails a host of hypothesis, one for each itemset. A multiple
hypothesis testing method is needed to control the number of false positives
(Type I error). Our contribution in this paper is to extend the multiple
hypothesis framework to be used with a generic data mining algorithm. We
provide a method that provably controls the family-wise error rate (FWER, the
probability of at least one false positive) in the strong sense. We evaluate
the performance of our solution on both real and generated data. The results
show that our method controls the FWER while maintaining the power of the test.Comment: 28 page
Some Experimental Signatures to look for Time-reversal Violating superconductors
We discuss some experimental signatures associated with the topological
structures of unconventional superconductor order parameters of form
, where , or . Specifically, we study
the topological surface states on the and equivalent surfaces of such
superconductors which are observable in Andreev tunneling experiments, as well
as evaluate the magnetic flux trapped in superconducting rings of such
superconductors with multiple grain-boundary Josephson junctions. Previous
experiments are examined and several new experiments suggested.Comment: 11 pages, 3 figure
Spinon-Holon binding in model
Using a phenomenological model, we discuss the consequences of spinon-holon
binding in the U(1) slave-boson approach to model. Within a small
( hole concentration) expansion, we show that spinon-holon binding produces
a pseudo-gap normal state with a segmented Fermi surface and the
superconducting state is formed by opening an "additional" d-wave gap on the
segmented Fermi surface. The d-wave gap merge with the pseudo-gap smoothly as
temperature . The quasi-particles in the superconducting state are
coupled to external electromagnetic field with a coupling constant of order
where , depending on the strength of the
effective spinon-holon binding potential.Comment: 9 pages, 3 figure
Transitions to Measure Synchronization in Coupled Hamiltonian Systems
Transitions to measure synchronization in two coupled lattices
are investigated based on numerical simulations. The relationship between
measure synchronization (MS), phase locking and system's total energy is
studied both for periodic and chaotic states. Two different scalings are
discovered during the process to MS according to phase locking. Random walk
like phase synchronization in chaotic measure synchronization is found, and
phase locking interrupted by phase slips irregularly is also investigated.
Meanwhile, related analysis is qualitative given to explain this phenomenon.Comment: 10 pages, 6 figure
- …