233 research outputs found

    Initial validation of a virtual blood draw exposure paradigm for fear of blood and needles

    Get PDF
    Fear of blood, injections, and needles commonly prevents or delays individuals' receipt of health care, such as vaccines or blood draws. Innovative methods are needed to overcome these fears and reduce anxiety related to activities of this nature. The present study describes initial testing of an arm illusion paradigm that may prove useful during early phases of graded exposure for people with blood and needle fear. Seventy-four undergraduate students aged 18-29 years were tested. In line with study aims, results indicated that the virtual blood draw paradigm promoted strong perceptions of arm ownership and elicited significant changes in physiological indices (blood pressure, heart rate, electrodermal activity, respiratory rate) in response to key procedure elements (e.g., needle insertion). Further, bivariate correlations indicated that individual differences in self-reported blood and needle fear collected prior to the illusion paradigm were significantly associated with presyncopal symptoms reported following the procedure. In regression analyses, self-reported measures of blood and needle fear explained unique variance in presyncopal symptoms even after controlling for general state anxiety. These findings provide initial support for the virtual blood draw paradigm as a promising tool to help provide graded exposure to medical procedures involving needles and blood draw

    Water Infiltration in Methylammonium Lead Iodide Perovskite: Fast and Inconspicuous

    Get PDF
    While the susceptibility of CH3NH3PbI3 to water is well documented, water influence on device performance is not well understood. Herein we use infrared spectroscopy to show that water infiltration into CH3NH3PbI3 occurs much faster and at much lower humidity than previously thought. We propose a molecular model where water molecules have a strong effect on the hydrogen bonding between the methylammonium cations and the Pb-I cage. Furthermore, the exposure of CH3NH3PbI3 to ambient environment increases the photocurrent of films in lateral devices by more than one order of magnitude. The observed slow component in the photocurrent buildup indicates that the effect is associated with enhanced proton conduction when light is combined with water and oxygen exposure.C.M. and M.S. acknowledge support by the Heidelberg Graduate School of Fundamental Physics. A.A.B. is a Royal Society University Research Fellow.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.chemmater.5b0388

    Tissue Doppler echocardiographic quantification. Comparison to coronary angiography results in Acute Coronary Syndrome patients

    Get PDF
    BACKGROUND: Multiples indices have been described using tissue Doppler imaging (DTI) capabilities. The aim of this study was to assess the capability of one or several regional DTI parameters in separating control from ischemic myocardium. METHODS: Twenty-eight patients with acute myocardial infarction were imaged within 24-hour following an emergent coronary angioplasty. Seventeen controls without any coronary artery or myocardial disease were also explored. Global and regional left ventricular functions were assessed. High frame rate color DTI cineloop recordings were made in apical 4 and 2-chamber for subsequent analysis. Peak velocity during isovolumic contraction time (IVC), ejection time, isovolumic relaxation (IVR) and filling time were measured at the mitral annulus and the basal, mid and apical segments of each of the walls studied as well as peak systolic displacement and peak of strain. RESULTS: DTI-analysis enabled us to discriminate between the 3 populations (controls, inferior and anterior AMI). Even in non-ischemic segments, velocities and displacements were reduced in the 2 AMI populations. Peak systolic displacement was the best parameter to discriminate controls from AMI groups (wall by wall, p was systematically < 0.01). The combination IVC + and IVR< 1 discriminated ischemic from non-ischemic segments with 82% sensitivity and 85% specificity. CONCLUSION: DTI-analysis appears to be valuable in ischemic heart disease assessment. Its clinical impact remains to be established. However this simple index might really help in intensive care unit routine practice
    corecore