12,569 research outputs found
Recommended from our members
Digital measurement of lightning impulse parameters using curving fitting algorithms
This paper describes the application of curve fitting algorithms to aid the evaluation of lightning impulse parameters. A number of popular curve fitting algorithms have been evaluated and compared. Investigations using the genetic algorithm and other optimisation methods for the purpose of curve fitting have also been carried out and will be described
Atomic Oxygen Exposure of Polyimide Foam for International Space Station Solar Array Wing Blanket Box
Onorbit photos of the International Space Station (ISS) solar array blanket box foam pad assembly indicate degradation of the Kapton film covering the foam, leading to atomic oxygen (AO) exposure of the foam. The purpose of this test was to determine the magnitude of particulate generation caused by low-Earth orbital environment exposure of the foam and also by compression of the foam during solar array wing retraction. The polyimide foam used in the ISS solar array wing blanket box assembly is susceptible to significant AO erosion. The foam sample in this test lost one-third of its mass after exposure to the equivalent of 22 mo onorbit. Some particulate was generated by exposure to simulated orbital conditions and the simulated solar array retraction (compression test). However, onorbit, these particles would also be eroded by AO. The captured particles were generally <1 mm, and the particles shaken free of the sample had a maximum size of 4 mm. The foam sample maintained integrity after a compression load of 2.5 psi
Enhancing complex-network synchronization
Heterogeneity in the degree (connectivity) distribution has been shown to
suppress synchronization in networks of symmetrically coupled oscillators with
uniform coupling strength (unweighted coupling). Here we uncover a condition
for enhanced synchronization in directed networks with weighted coupling. We
show that, in the optimum regime, synchronizability is solely determined by the
average degree and does not depend on the system size and the details of the
degree distribution. In scale-free networks, where the average degree may
increase with heterogeneity, synchronizability is drastically enhanced and may
become positively correlated with heterogeneity, while the overall cost
involved in the network coupling is significantly reduced as compared to the
case of unweighted coupling.Comment: 4 pages, 3 figure
Applications of graphics to support a testbed for autonomous space vehicle operations
Researchers describe their experience using graphics tools and utilities while building an application, AUTOPS, that uses a graphical Machintosh (TM)-like interface for the input and display of data, and animation graphics to enhance the presentation of results of autonomous space vehicle operations simulations. AUTOPS is a test bed for evaluating decisions for intelligent control systems for autonomous vehicles. Decisions made by an intelligent control system, e.g., a revised mission plan, might be displayed to the user in textual format or he can witness the effects of those decisions via out of window graphics animations. Although a textual description conveys essentials, a graphics animation conveys the replanning results in a more convincing way. Similarily, iconic and menu-driven screen interfaces provide the user with more meaningful options and displays. Presented here are experiences with the SunView and TAE Plus graphics tools used for interface design, and the Johnson Space Center Interactive Graphics Laboratory animation graphics tools used for generating out out of the window graphics
Charges on Strange Quark Nuggets in Space
Since Witten's seminal 1984 paper on the subject, searches for evidence of
strange quark nuggets (SQNs) have proven unsuccessful. In the absence of
experimental evidence ruling out SQNs, the validity of theories introducing
mechanisms that increase their stability should continue to be tested. To
stimulate electromagnetic SQN searches, particularly space searches, we
estimate the net charge that would develop on an SQN in space exposed to
various radiation baths (and showers) capable of liberating their less strongly
bound electrons, taking into account recombination with ambient electrons. We
consider, in particular, the cosmic background radiation, radiation from the
sun, and diffuse galactic and extragalactic -ray backgrounds. A
possible dramatic signal of SQNs in explosive astrophysical events is noted.Comment: CitationS added, new subsection added, more discussion, same
numerical result
Note on Redshift Distortion in Fourier Space
We explore features of redshift distortion in Fourier analysis of N-body
simulations. The phases of the Fourier modes of the dark matter density
fluctuation are generally shifted by the peculiar motion along the line of
sight, the induced phase shift is stochastic and has probability distribution
function (PDF) symmetric to the peak at zero shift while the exact shape
depends on the wave vector, except on very large scales where phases are
invariant by linear perturbation theory. Analysis of the phase shifts motivates
our phenomenological models for the bispectrum in redshift space. Comparison
with simulations shows that our toy models are very successful in modeling
bispectrum of equilateral and isosceles triangles at large scales. In the
second part we compare the monopole of the power spectrum and bispectrum in the
radial and plane-parallel distortion to test the plane-parallel approximation.
We confirm the results of Scoccimarro (2000) that difference of power spectrum
is at the level of 10%, in the reduced bispectrum such difference is as small
as a few percents. However, on the plane perpendicular to the line of sight of
k_z=0, the difference in power spectrum between the radial and plane-parallel
approximation can be more than 10%, and even worse on very small scales. Such
difference is prominent for bispectrum, especially for those configurations of
tilted triangles. The non-Gaussian signals under radial distortion on small
scales are systematically biased downside than that in plane-parallel
approximation, while amplitudes of differences depend on the opening angle of
the sample to the observer. The observation gives warning to the practice of
using the power spectrum and bispectrum measured on the k_z=0 plane as
estimation of the real space statistics.Comment: 15 pages, 8 figures. Accepted for publication in ChJA
Recovery of Large Angular Scale CMB Polarization for Instruments Employing Variable-delay Polarization Modulators
Variable-delay Polarization Modulators (VPMs) are currently being implemented
in experiments designed to measure the polarization of the cosmic microwave
background on large angular scales because of their capability for providing
rapid, front-end polarization modulation and control over systematic errors.
Despite the advantages provided by the VPM, it is important to identify and
mitigate any time-varying effects that leak into the synchronously modulated
component of the signal. In this paper, the effect of emission from a K
VPM on the system performance is considered and addressed. Though instrument
design can greatly reduce the influence of modulated VPM emission, some
residual modulated signal is expected. VPM emission is treated in the presence
of rotational misalignments and temperature variation. Simulations of
time-ordered data are used to evaluate the effect of these residual errors on
the power spectrum. The analysis and modeling in this paper guides
experimentalists on the critical aspects of observations using VPMs as
front-end modulators. By implementing the characterizations and controls as
described, front-end VPM modulation can be very powerful for mitigating
noise in large angular scale polarimetric surveys. None of the systematic
errors studied fundamentally limit the detection and characterization of
B-modes on large scales for a tensor-to-scalar ratio of . Indeed,
is achievable with commensurately improved characterizations and
controls.Comment: 13 pages, 13 figures, 1 table, matches published versio
Network Topology of an Experimental Futures Exchange
Many systems of different nature exhibit scale free behaviors. Economic
systems with power law distribution in the wealth is one of the examples. To
better understand the working behind the complexity, we undertook an empirical
study measuring the interactions between market participants. A Web server was
setup to administer the exchange of futures contracts whose liquidation prices
were coupled to event outcomes. After free registration, participants started
trading to compete for the money prizes upon maturity of the futures contracts
at the end of the experiment. The evolving `cash' flow network was
reconstructed from the transactions between players. We show that the network
topology is hierarchical, disassortative and scale-free with a power law
exponent of 1.02+-0.09 in the degree distribution. The small-world property
emerged early in the experiment while the number of participants was still
small. We also show power law distributions of the net incomes and
inter-transaction time intervals. Big winners and losers are associated with
high degree, high betweenness centrality, low clustering coefficient and low
degree-correlation. We identify communities in the network as groups of the
like-minded. The distribution of the community sizes is shown to be power-law
distributed with an exponent of 1.19+-0.16.Comment: 6 pages, 12 figure
Gravitational waves from supernova matter
We have performed a set of 11 three-dimensional magnetohydrodynamical core
collapse supernova simulations in order to investigate the dependencies of the
gravitational wave signal on the progenitor's initial conditions. We study the
effects of the initial central angular velocity and different variants of
neutrino transport. Our models are started up from a 15 solar mass progenitor
and incorporate an effective general relativistic gravitational potential and a
finite temperature nuclear equation of state. Furthermore, the electron flavour
neutrino transport is tracked by efficient algorithms for the radiative
transfer of massless fermions. We find that non- and slowly rotating models
show gravitational wave emission due to prompt- and lepton driven convection
that reveals details about the hydrodynamical state of the fluid inside the
protoneutron stars. Furthermore we show that protoneutron stars can become
dynamically unstable to rotational instabilities at T/|W| values as low as ~2 %
at core bounce. We point out that the inclusion of deleptonization during the
postbounce phase is very important for the quantitative GW prediction, as it
enhances the absolute values of the gravitational wave trains up to a factor of
ten with respect to a lepton-conserving treatment.Comment: 10 pages, 6 figures, accepted, to be published in a Classical and
Quantum Gravity special issue for MICRA200
Irreversible Opinion Spreading on Scale-Free Networks
We study the dynamical and critical behavior of a model for irreversible
opinion spreading on Barab\'asi-Albert (BA) scale-free networks by performing
extensive Monte Carlo simulations. The opinion spreading within an
inhomogeneous society is investigated by means of the magnetic Eden model, a
nonequilibrium kinetic model for the growth of binary mixtures in contact with
a thermal bath. The deposition dynamics, which is studied as a function of the
degree of the occupied sites, shows evidence for the leading role played by
hubs in the growth process. Systems of finite size grow either ordered or
disordered, depending on the temperature. By means of standard finite-size
scaling procedures, the effective order-disorder phase transitions are found to
persist in the thermodynamic limit. This critical behavior, however, is absent
in related equilibrium spin systems such as the Ising model on BA scale-free
networks, which in the thermodynamic limit only displays a ferromagnetic phase.
The dependence of these results on the degree exponent is also discussed for
the case of uncorrelated scale-free networks.Comment: 9 pages, 10 figures; added results and discussion on uncorrelated
scale-free networks; added references. To appear in PR
- …