21,406 research outputs found
Finite element solver for 3-D compressible viscous flows
The space shuttle main engine (SSME) has extremely complex internal flow structure. The geometry of the flow domain is three-dimensional with complicated topology. The flow is compressible, viscous, and turbulent with large gradients in flow quantities and regions of recirculations. The analysis of the flow field in SSME involves several tedious steps. One is the geometrical modeling of the particular zone of the SSME being studied. Accessing the geometry definition, digitalizing it, and developing surface interpolations suitable for an interior grid generator require considerable amount of manual labor. There are several types of grid generators available with some general-purpose finite element programs. An efficient and robust computational scheme for solving 3D Navier-Stokes equations has to be implemented. Post processing software has to be adapted to visualize and analyze the computed 3D flow field. The progress made in a project to develop software for the analysis of the flow is discussed. The technical approach to the development of the finite element scheme and the relaxation procedure are discussed. The three dimensional finite element code for the compressible Navier-Stokes equations is listed
A locally implicit method for fluid flow problems
The fluid flow inside the space shuttle main engine (SSME) traverses through a complex geometrical configuration. The flow is compressible, viscous, and turbulent with pockets of separated regions. Several computer codes are being developed to solve three dimensional Navier-Stokes equations with different turbulence models for analyzing the SSME internal flow. The locally implicit scheme is a computationally efficient scheme which converges rapidly in multi-grid modes for elliptic problems. It has the promise of providing a rapidly converging algorithm for steady-state viscous flow problems
A finite element solver for 3-D compressible viscous flows
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers
Analytical developments for definition and prediction of USB noise
A systematic acoustic data base and associated flow data are used in identifying the noise generating mechanisms of upper surface blown flap configurations of short takeoff and landing aircraft. Theory is developed for the radiated sound field of the highly sheared flow of the trailing edge wake. An empirical method is also developed using extensive experimental data and physical reasonings to predict the noise levels
X-ray properties of UV-selected star forming galaxies at z~1 in the Hubble Deep Field North
We present an analysis of the X-ray emission from a large sample of
ultraviolet (UV) selected, star forming galaxies with 0.74<z<1.32 in the Hubble
Deep Field North (HDF-N) region. By excluding all sources with significant
detected X-ray emission in the 2 Ms Chandra observation we are able to examine
the properties of galaxies for which the emission in both UV and X-ray is
expected to be predominantly due to star formation. Stacking the X-ray flux
from 216 galaxies in the soft and hard bands produces significant detections.
The derived mean 2-10 keV rest-frame luminosity is 2.97+/-0.26x10^(40) erg/s,
corresponding to an X-ray derived star formation rate (SFR) of 6.0+/-0.6
Msolar/yr. Comparing the X-ray value with the mean UV derived SFR, uncorrected
for attenuation, we find that the average UV attenuation correction factor is
\~3. By binning the galaxy sample according to UV magnitude and colour,
correlations between UV and X-ray emission are also examined. We find a strong
positive correlation between X-ray emission and rest-frame UV emission. A
correlation between the ratio of X-ray-to-UV emission and UV colour is also
seen, such that L(X)/L(UV) increases for redder galaxies. Given that X-ray
emission offers a view of star formation regions that is relatively unaffected
by extinction, results such as these can be used to evaluate the effects of
dust on the UV emission from high-z galaxies. For instance we derive a
relationship for estimating UV attenuation corrections as a function of colour
excess. The observed relation is inconsistent with the Calzetti et al. (2000)
reddening law which over predicts the range in UV attenuation corrections by a
factor of ~100 for the UV selected z~1 galaxies in this sample (abridged).Comment: 10 pages, 7 figures, accepted for publication in MNRA
First Red List of Medicinal Plants of Andhra Pradesh, India - Conservation Assessment and Management Planning
The present article is based on the First Conservation Assessment and Management Planning (CAMP) workshop organized by Medicinal Plants Conservation Centre, Environment Protection Training and Research Institute, Hyderabad, India based on IUCN Red List categories - 2000. In the workshop 50 prioritised medicinal plant species found in Andhra Pradesh were assessed and out of these 39 found to be threatened in the State of Andhra Pradesh, India
- …