44,635 research outputs found
Magnetically tuned spin dynamics resonance
We present the experimental observation of a magnetically tuned resonance
phenomenon resulting from spin mixing dynamics of ultracold atomic gases. In
particular we study the magnetic field dependence of spin conversion in F=2
87Rb spinor condensates in the crossover from interaction dominated to
quadratic Zeeman dominated dynamics. We discuss the observed phenomenon in the
framework of spin dynamics as well as matter wave four wave mixing. Furthermore
we show that the validity range of the single mode approximation for spin
dynamics is significantly extended in the regime of high magnetic field
Analytical ground state for the three-band Hubbard model
For the calculation of charge excitations as those observed in, e.g.,
photo-emission spectroscopy or in electron-energy loss spectroscopy, a correct
description of ground-state charge properties is essential. In strongly
correlated systems like the undoped cuprates this is a highly non-trivial
problem. In this paper we derive a non-perturbative analytical approximation
for the ground state of the three-band Hubbard model on an infinite, half
filled CuO_2 plane. By comparison with Projector Quantum Monte Carlo
calculations it is shown that the resulting expressions correctly describe the
charge properties of the ground state. Relations to other approaches are
discussed. The analytical ground state preserves size consistency and can be
generalized for other geometries, while still being both easy to interpret and
to evaluate.Comment: REVTeX, 8 pages, 6 figures, to appear in Phys. Rev.
Ultracold quantum gases in triangular optical lattices
Over the last years the exciting developments in the field of ultracold atoms
confined in optical lattices have led to numerous theoretical proposals devoted
to the quantum simulation of problems e.g. known from condensed matter physics.
Many of those ideas demand for experimental environments with non-cubic lattice
geometries. In this paper we report on the implementation of a versatile
three-beam lattice allowing for the generation of triangular as well as
hexagonal optical lattices. As an important step the superfluid-Mott insulator
(SF-MI) quantum phase transition has been observed and investigated in detail
in this lattice geometry for the first time. In addition to this we study the
physics of spinor Bose-Einstein condensates (BEC) in the presence of the
triangular optical lattice potential, especially spin changing dynamics across
the SF-MI transition. Our results suggest that below the SF-MI phase
transition, a well-established mean-field model describes the observed data
when renormalizing the spin-dependent interaction. Interestingly this opens new
perspectives for a lattice driven tuning of a spin dynamics resonance occurring
through the interplay of quadratic Zeeman effect and spin-dependent
interaction. We finally discuss further lattice configurations which can be
realized with our setup.Comment: 19 pages, 7 figure
Interference effects in above-threshold ionization from diatomic molecules: determining the internuclear separation
We calculate angle-resolved above-threshold ionization spectra for diatomic
molecules in linearly polarized laser fields, employing the strong-field
approximation. The interference structure resulting from the individual
contributions of the different scattering scenarios is discussed in detail,
with respect to the dependence on the internuclear distance and molecular
orientation. We show that, in general, the contributions from the processes in
which the electron is freed at one center and rescatters off the other obscure
the interference maxima and minima obtained from single-center processes.
However, around the boundary of the energy regions for which rescattering has a
classical counterpart, such processes play a negligible role and very clear
interference patterns are observed. In such energy regions, one is able to
infer the internuclear distance from the energy difference between adjacent
interference minima.Comment: 10 pages, 8 figures; discussions slightly modified and an additional
figure inserted for clarit
A Note on Flux Induced Superpotentials in String Theory
Non-vanishing fluxes in M-theory and string theory compactifications induce a
superpotential in the lower dimensional theory. Gukov has conjectured the
explicit form of this superpotential. We check this conjecture for the
heterotic string compactified on a Calabi-Yau three-fold as well as for warped
M-theory compactifications on Spin(7) holonomy manifolds, by performing a
Kaluza-Klein reduction.Comment: 19 pages, no figure
Comment on "Generalized exclusion processes: Transport coefficients"
In a recent paper Arita et al. [Phys. Rev. E 90, 052108 (2014)] consider the
transport properties of a class of generalized exclusion processes. Analytical
expressions for the transport-diffusion coefficient are derived by ignoring
correlations. It is claimed that these expressions become exact in the
hydrodynamic limit. In this Comment, we point out that (i) the influence of
correlations upon the diffusion does not vanish in the hydrodynamic limit, and
(ii) the expressions for the self- and transport diffusion derived by Arita et
al. are special cases of results derived in [Phys. Rev. Lett. 111, 110601
(2013)].Comment: (citation added, published version
Adsorption and desorption in confined geometries: a discrete hopping model
We study the adsorption and desorption kinetics of interacting particles
moving on a one-dimensional lattice. Confinement is introduced by limiting the
number of particles on a lattice site. Adsorption and desorption are found to
proceed at different rates, and are strongly influenced by the
concentration-dependent transport diffusion. Analytical solutions for the
transport and self-diffusion are given for systems of length 1 and 2 and for a
zero-range process. In the last situation the self- and transport diffusion can
be calculated analytically for any length.Comment: Published in EPJ ST volume "Brownian Motion in Confined Geometries
- …