401 research outputs found

    Prompt Beta Spectroscopy as a Diagnostic for Mix in Ignited NIF Capsules

    Full text link
    The National Ignition Facility (NIF) technology is designed to drive deuterium-tritium (DT) internal confinement fusion (ICF) targets to ignition using indirect radiation from laser beam energy captured in a hohlraum. Hydrodynamical instabilities at interfaces in the ICF capsule leading to mix between the DT fue l and the ablator shell material are of fundamental physical interest and can affect the performance characteristics of the capsule. In this Letter we describe new radiochemical diagnostics for mix processes in ICF capsules with plastic or Be (0.9%Cu) ablator shells. Reactions of high-energy tritons with shell material produce high-energy β\beta-emitters. We show that mix between the DT fuel and the shell material enhances high-energy prompt beta emission from these reactions by more than an order of magnitude over that expected in the absence of mix

    Analysis of the chargino and neutralino mass parameters at one-loop level

    Full text link
    In the Minimal Supersymmetric Standard Model (MSSM) the masses of the neutralinos and charginos depend on the gaugino and higgsino mass parameters M, M' and μ\mu. If supersymmetry is realized, the extraction of these parameters from future high energy experiments will be crucial to test the underlying theory. We present a consistent method how on-shell parameters can be properly defined at one-loop level and how they can be determined from precision measurements. In addition, we show how a GUT relation for the parameters M and M' can be tested at one-loop level. The numerical analysis is based on a complete one-loop calculation. The derived analytic formulae are given in the appendix.Comment: 16 pages, 8 figure

    The isolation of gravitational instantons: Flat tori V flat R^4

    Full text link
    The role of topology in the perturbative solution of the Euclidean Einstein equations about flat instantons is examined.Comment: 15 pages, ICN-UNAM 94-1

    Detecting an Invisibly Decaying Higgs Boson at a Hadron Supercollider

    Get PDF
    We demonstrate that an invisibly decaying Higgs boson with Standard Model coupling strength to top--anti-top can be detected at the LHC for masses up to about 250 GeV.Comment: 7 pages, requires phyzzx.tex and tables.tex, revised to convert results from SSC to LHC and include additional top quark mass cases, full postscript file including embedded figure available via anonymous ftp at ucdhep.ucdavis.edu as [anonymous.gunion]hinvisible_revised.ps, preprint UCD-93-2

    Kinetic decoupling of neutralino dark matter

    Get PDF
    After neutralinos cease annihilating in the early Universe, they may still scatter elastically from other particles in the primordial plasma. At some point in time, however, they will eventually stop scattering. We calculate the cross sections for neutralino elastic scattering from standard-model particles to determine the time at which this kinetic decoupling occurs. We show that kinetic decoupling occurs above a temperature TT\sim MeV. Thereafter, neutralinos act as collisionless cold dark matter.Comment: Replaced with revised version, new references adde

    Power Spectrum Estimators For Large CMB Datasets

    Get PDF
    Forthcoming high-resolution observations of the Cosmic Microwave Background (CMB) radiation will generate datasets many orders of magnitude larger than have been obtained to date. The size and complexity of such datasets presents a very serious challenge to analysing them with existing or anticipated computers. Here we present an investigation of the currently favored algorithm for obtaining the power spectrum from a sky-temperature map --- the quadratic estimator. We show that, whilst improving on direct evaluation of the likelihood function, current implementations still inherently scale as the equivalent of the cube of the number of pixels or worse, and demonstrate the critical importance of choosing the right implementation for a particular dataset.Comment: 8 pages LATEX, no figures, corrected misaligned columns in table

    Low energy conversion electron detection in superfluid He3 at ultra-low temperature

    Full text link
    We report on the first results of the MACHe3 (MAtrix of Cells of Helium 3) prototype experiment concerning the measurement of low energy conversion electrons at ultra-low temperature. For the first time, the feasibility of the detection of low energy electrons is demonstrated in superfluid He3-B cooled down to 100 microK. Low energy electrons at 7.3 keV coming from the K shell conversion of the 14.4 keV nuclear transition of a low activity Co57 source are detected, opening the possibility to use a He3-based detector for the detection of Weakly Interacting Massive Particles (WIMPs) which are expected to release an amount of energy higher-bounded by 5.6 keV.Comment: 8 pages, 3 figures, to appear in NIM

    Cosmological measurement of neutrino mass in the presence of leptonic asymmetry

    Get PDF
    We show that even the smallest neutrino mass consistent with the Super--Kamiokande data is relevant for cosmological models of structure formation and cosmic microwave background (CMB) anisotropies, provided that a relic neutrino asymmetry exists. We calculate the precision with which a 0.07 eV neutrino mass could be extracted from CMB anisotropy and large-scale structure data by the future Planck satellite and Sloan Digital Sky Survey. We find that such a mass can be detected, assuming a large relic neutrino asymmetry still allowed by current experimental data. This measurement of the absolute value of the neutrino mass would be crucial for our understanding of neutrino models.Comment: 8 pages, 2 PS figures, version to be publishe
    corecore