85 research outputs found

    Bond-order modulated staggered flux phase for the t−Jt{-}J model on the square lattice

    Full text link
    Motivated by the observation of inhomogeneous patterns in some high-Tc_c cuprate compounds, several variational Gutzwiller-projected wave-functions with built-in charge and bond order parameters are proposed for the extended t−J−Vt-J-V model on the square lattice at low doping. First, following a recent Gutzwiller-projected mean-field approach by one of us (Phys. Rev. B. {\bf 72}, 060508(R) (2005)), we investigate, as a function of doping and Coulomb repulsion, the stability of the staggered flux phase with respect to small spontaneous modulations of squared unit cells ranging from 2×22\times 2 to 32×32\sqrt{32}\times\sqrt{32}. It is found that a 4×44\times 4 bond-order (BO) modulation appears spontaneously on top of the staggered flux pattern for hole doping around 1/8. A related wave-function is then constructed and optimized accurately and its properties studied extensively using an approximation-free variational Monte Carlo scheme. Finally, the competition of the BO-modulated staggered flux wave-function w.r.t. the d-wave RVB wave-function or the commensurate flux state is investigated. It is found that a short range Coulomb repulsion penalizes the d-wave superconductor and that a moderate Coulomb repulsion brings them very close in energy. Our results are discussed in connection to the STM observations in the under-doped regime of some cuprates.Comment: 10 pages, 9 figure

    Angle-dependence of quantum oscillations in YBa2Cu3O6.59 shows free spin behaviour of quasiparticles

    Full text link
    Measurements of quantum oscillations in the cuprate superconductors afford a new opportunity to assess the extent to which the electronic properties of these materials yield to a description rooted in Fermi liquid theory. However, such an analysis is hampered by the small number of oscillatory periods observed. Here we employ a genetic algorithm to globally model the field, angular, and temperature dependence of the quantum oscillations observed in the resistivity of YBa2Cu3O6.59. This approach successfully fits an entire data set to a Fermi surface comprised of two small, quasi-2-dimensional cylinders. A key feature of the data is the first identification of the effect of Zeeman splitting, which separates spin-up and spin-down contributions, indicating that the quasiparticles in the cuprates behave as nearly free spins, constraining the source of the Fermi surface reconstruction to something other than a conventional spin density wave with moments parallel to the CuO2 planes.Comment: 8 pages, 4 figure

    Advances in single crystal growth and annealing treatment of electron-doped HTSC

    Full text link
    High quality electron-doped HTSC single crystals of Pr2−xCexCuO4+δ\rm Pr_{2-x}Ce_{x}CuO_{4+\delta} and Nd2−xCexCuO4+δ\rm Nd_{2-x}Ce_{x}CuO_{4+\delta} have been successfully grown by the container-free traveling solvent floating zone technique. The optimally doped Pr2−xCexCuO4+δ\rm Pr_{2-x}Ce_{x}CuO_{4+\delta} and Nd2−xCexCuO4+δ\rm Nd_{2-x}Ce_{x}CuO_{4+\delta} crystals have transition temperatures TcT_{\rm c} of 2525\,K and 23.523.5\,K, respectively, with a transition width of less than 11\,K. We found a strong dependence of the optimal growth parameters on the Ce content xx. We discuss the optimization of the post-growth annealing treatment of the samples, the doping extension of the superconducting dome for both compounds as well as the role of excess oxygen. The absolute oxygen content of the as-grown crystals is determined from thermogravimetric experiments and is found to be ≥4.0\ge 4.0. This oxygen surplus is nearly completely removed by a post-growth annealing treatment. The reduction process is reversible as demonstrated by magnetization measurements. In as-grown samples the excess oxygen resides on the apical site O(3). This apical oxygen has nearly no doping effect, but rather influences the evolution of superconductivity by inducing additional disorder in the CuO2_{2} layers. The very high crystal quality of Nd2−xCexCuO4+δ\rm Nd_{2-x}Ce_{x}CuO_{4+\delta} is particularly manifest in magnetic quantum oscillations observed on several samples at different doping levels. They provide a unique opportunity of studying the Fermi surface and its dependence on the carrier concentration in the bulk of the crystals.Comment: 19 pages, 7 figures, submitted to Eur. Phys. J.

    Chemical potential oscillations from a single nodal pocket in the underdoped high-Tc superconductor YBa2Cu3O6+x

    Full text link
    The mystery of the normal state in the underdoped cuprates has deepened with the use of newer and complementary experimental probes. While photoemission studies have revealed solely `Fermi arcs' centered on nodal points in the Brillouin zone at which holes aggregate upon doping, more recent quantum oscillation experiments have been interpreted in terms of an ambipolar Fermi surface, that includes sections containing electron carriers located at the antinodal region. To address the question of whether an ambipolar Fermi surface truly exists, here we utilize measurements of the second harmonic quantum oscillations, which reveal that the amplitude of these oscillations arises mainly from oscillations in the chemical potential, providing crucial information on the nature of the Fermi surface in underdoped YBa2Cu3O6+x. In particular, the detailed relationship between the second harmonic amplitude and the fundamental amplitude of the quantum oscillations leads us to the conclusion that there exists only a single underlying quasi-two dimensional Fermi surface pocket giving rise to the multiple frequency components observed via the effects of warping, bilayer splitting and magnetic breakdown. A range of studies suggest that the pocket is most likely associated with states near the nodal region of the Brillouin zone of underdoped YBa2Cu3O6+x at high magnetic fields.Comment: 7 pages, 4 figure

    Superconductivity and Pseudogap in Quasi-Two-Dimensional Metals around the Antiferromagnetic Quantum Critical Point

    Full text link
    Spin fluctuations (SF) and SF-mediated superconductivity (SC) in quasi-two-dimensional metals around the antiferrromagnetic (AF) quantum critical point (QCP) are investigated by using the self-consistent renormalization theory for SF and the strong coupling theory for SC. We introduce a parameter y0 as a measure for the distance from the AFQCP which is approximately proportional to (x-xc), x being the electron (e) or hole (h) doping concentration to the half-filled band and xc being the value at the AFQCP. We present phase diagrams in the T-y0 plane including contour maps of the AF correlation length and AF and SC transition temperatures TN and Tc, respectively. The Tc curve is dome-shaped with a maximum at around the AFQCP. The calculated one-electron spectral density shows a pseudogap in the high-density-of-states region near (pi,0) below around a certain temperature T* and gives a contour map at the Fermi energy reminiscent of the Fermi arc. These results are discussed in comparison with e- and h-doped high-Tc cuprates.Comment: 5 pages, 3 figure

    Indication for the coexistence of closed orbit and quantum interferometer with the same cross section in the organic metal (ET)4(H3O)[Fe(C2O4)3].C6H4Cl2: Persistence of SdH oscillations above 30 K

    Full text link
    Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) oscillations spectra of the quasi-two dimensional charge transfer salt β\beta"-(ET)4_4(H3_3O)[Fe(C2_2O4_4)3_3]⋅\cdotC6_6H4_4Cl2_2 have been investigated in pulsed magnetic fields up to 54 T. The data reveal three basic frequencies Fa_a, Fb_b and Fb−a_{b - a}, which can be interpreted on the basis of three compensated closed orbits at low temperature. However a very weak thermal damping of the Fourier component Fb_b, with the highest amplitude, is evidenced for SdH spectra above about 6 K. As a result, magnetoresistance oscillations are observed at temperatures higher than 30 K. This feature, which is not observed for dHvA oscillations, is in line with quantum interference, pointing to a Fermi surface reconstruction in this compound.Comment: published in Eur. Phys. J. B 71 203 (2009

    Determining the in-plane Fermi surface topology in underdoped high Tc superconductors using angle-dependent magnetic quantum oscillations

    Full text link
    We propose a quantum oscillation experiment by which the rotation of an underdoped YBa2Cu3O6+x sample about two different axes with respect to the orientation of the magnetic field can be used to infer the shape of the in-plane cross-section of corrugated Fermi surface cylinder(s). Deep corrugations in the Fermi surface are expected to give rise to nodes in the quantum oscillation amplitude that depend on the magnitude and orientation of the magnetic induction B. Because the symmetry of electron and hole cyclinders within the Brillouin zone are expected to be very different, the topology can provide essential clues as to the broken symmetry responsible for the observed oscillations

    Electronic structure in underdoped cuprates due to the emergence of a pseudogap

    Full text link
    The phenomenological Green's function developed in the works of Yang, Rice and Zhang has been very successful in understanding many of the anomalous superconducting properties of the deeply underdoped cuprates. It is based on considerations of the resonating valence bond spin liquid approximation and is designed to describe the underdoped regime of the cuprates. Here we emphasize the region of doping, xx, just below the quantum critical point at which the pseudogap develops. In addition to Luttinger hole pockets centered around the nodal direction, there are electron pockets near the antinodes which are connected to the hole pockets by gapped bridging contours. We determine the contours of nearest approach as would be measured in angular resolved photoemission experiments and emphasize signatures of the Fermi surface reconstruction from the large Fermi contour of Fermi liquid theory (which contains 1+x1+x hole states) to the Luttinger pocket (which contains xx hole states). We find that the quasiparticle effective mass renormalization increases strongly towards the edge of the Luttinger pockets beyond which it diverges.Comment: 11 pages, 9 figure

    Quantum oscillations from Fermi arcs

    Full text link
    When a metal is subjected to strong magnetic field B nearly all measurable quantities exhibit oscillations periodic in 1/B. Such quantum oscillations represent a canonical probe of the defining aspect of a metal, its Fermi surface (FS). In this study we establish a new mechanism for quantum oscillations which requires only finite segments of a FS to exist. Oscillations periodic in 1/B occur if the FS segments are terminated by a pairing gap. Our results reconcile the recent breakthrough experiments showing quantum oscillations in a cuprate superconductor YBCO, with a well-established result of many angle resolved photoemission (ARPES) studies which consistently indicate "Fermi arcs" -- truncated segments of a Fermi surface -- in the normal state of the cuprates.Comment: 8 pages, 5 figure
    • …
    corecore