118 research outputs found

    Materials and extracellular matrix rigidity highlighted in tissue damages and diseases: Implication for biomaterials design and therapeutic targets

    Get PDF
    Rigidity (or stiffness) of materials and extracellular matrix has proven to be one of the most significant extracellular physicochemical cues that can control diverse cell behaviors, such as contractility, motility, and spreading, and the resultant pathophysiological phenomena. Many 2D materials engineered with tunable rigidity have enabled researchers to elucidate the roles of matrix biophysical cues in diverse cellular events, including migration, lineage specification, and mechanical memory. Moreover, the recent findings accumulated under 3D environments with viscoelastic and remodeling properties pointed to the importance of dynamically changing rigidity in cell fate control, tissue repair, and disease progression. Thus, here we aim to highlight the works related with material/matrix-rigidity-mediated cell and tissue behaviors, with a brief outlook into the studies on the effects of material/matrix rigidity on cell behaviors in 2D systems, further discussion of the events and considerations in tissue-mimicking 3D conditions, and then examination of the in vivo findings that concern material/matrix rigidity. The current discussion will help understand the material/matrix-rigidity-mediated biological phenomena and further leverage the concepts to find therapeutic targets and to design implantable materials for the treatment of damaged and diseased tissues

    Hyperelastic, shape‐memorable, and ultra‐cell‐adhesive degradable polycaprolactone‐polyurethane copolymer for tissue regeneration

    Get PDF
    Novel polycaprolactone-based polyurethane (PCL-PU) copolymers with hyperelasticity, shape-memory, and ultra-cell-adhesion properties are reported as clinically applicable tissue-regenerative biomaterials. New isosorbide derivatives (propoxylated or ethoxylated ones) were developed to improve mechanical properties by enhanced reactivity in copolymer synthesis compared to the original isosorbide. Optimized PCL-PU with propoxylated isosorbide exhibited notable mechanical performance (50 MPa tensile strength and 1150% elongation with hyperelasticity under cyclic load). The shape-memory effect was also revealed in different forms (film, thread, and 3D scaffold) with 40%–80% recovery in tension or compression mode after plastic deformation. The ultra-cell-adhesive property was proven in various cell types which were reasoned to involve the heat shock protein-mediated integrin (α5 and αV) activation, as analyzed by RNA sequencing and inhibition tests. After the tissue regenerative potential (muscle and bone) was confirmed by the myogenic and osteogenic responses in vitro, biodegradability, compatible in vivo tissue response, and healing capacity were investigated with in vivo shape-memorable behavior. The currently exploited PCL-PU, with its multifunctional (hyperelastic, shape-memorable, ultra-celladhesive, and degradable) nature and biocompatibility, is considered a potential tissue- regenerative biomaterial, especially for minimally invasive surgery that requires small incisions to approach large defects with excellent regeneration capacity

    Perturbative Expansion around the Gaussian Effective Potential of the Fermion Field Theory

    Get PDF
    We have extended the perturbative expansion method around the Gaussian effective action to the fermionic field theory, by taking the 2-dimensional Gross-Neveu model as an example. We have computed both the zero temperature and the finite temperature effective potentials of the Gross-Neveu model up to the first perturbative correction terms, and have found that the critical temperature, at which dynamically broken symmetry is restored, is significantly improved for small value of the flavour number.Comment: 14pages, no figures, other comments Typographical errors are corrected and new references are adde

    Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine

    Get PDF
    Despite growing interest and a recent surge in papers, the role of autophagy in glucose and lipid metabolism is unclear. We produced mice with skeletal muscle–specific deletion of Atg7 (encoding autophagy-related 7). Unexpectedly, these mice showed decreased fat mass and were protected from diet-induced obesity and insulin resistance; this phenotype was accompanied by increased fatty acid oxidation and browning of white adipose tissue (WAT) owing to induction of fibroblast growth factor 21 (Fgf21). Mitochondrial dysfunction induced by autophagy deficiency increased Fgf21 expression through induction of Atf4, a master regulator of the integrated stress response. Mitochondrial respiratory chain inhibitors also induced Fgf21 in an Atf4-dependent manner. We also observed induction of Fgf21, resistance to diet-induced obesity and amelioration of insulin resistance in mice with autophagy deficiency in the liver, another insulin target tissue. These findings suggest that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone we consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance

    Association between colony-stimulating factor 1 receptor gene polymorphisms and asthma risk

    Get PDF
    Colony-stimulating factor 1 receptor (CSF1R) is expressed in monocytes/macrophages and dendritic cells. These cells play important roles in the innate immune response, which is regarded as an important aspect of asthma development. Genetic alterations in the CSF1R gene may contribute to the development of asthma. We investigated whether CSF1R gene polymorphisms were associated with the risk of asthma. Through direct DNA sequencing of the CSF1R gene, we identified 28 single nucleotide polymorphisms (SNPs) and genotyped them in 303 normal controls and 498 asthmatic patients. Expression of CSF1R protein and mRNA were measured on CD14-positive monocytes and neutrophils in peripheral blood of asthmatic patients using flow cytometry and real-time PCR. Among the 28 polymorphisms, two intronic polymorphism (+20511C>T and +22693T>C) were associated with the risk of asthma by logistic regression analysis. The frequencies of the minor allele at CSF1R +20511C>T and +22693T>C were higher in asthmatic subjects than in normal controls (4.6 vs. 7.7%, p = 0.001 in co-dominant and dominant models; 16.4 vs. 25.8%, p = 0.0006 in a recessive model). CSF1R mRNA levels in neutrophils of the asthmatic patients having the +22693CC allele were higher than in those having the +22693TT allele (p = 0.026). Asthmatic patients with the +22693CC allele also showed significantly higher CSF1R expression on CD14-positive monocytes and neutrophils than did those with the +22693TT allele (p = 0.045 and p = 0.044). The +20511C>T SNP had no association with CSF1R mRNA or protein expression. In conclusion, the minor allele at CSF1R +22693T>C may have a susceptibility effect in the development of asthma, via increased CSF1R protein and mRNA expression in inflammatory cells
    • 

    corecore