112 research outputs found
State-of-the-art production chains for peas, beans and chickpeas\u2014valorization of agro-industrial residues and applications of derived extracts
The world is confronted with the depletion of natural resources due to their unsustainable use and the increasing size of populations. In this context, the efficient use of by-products, residues and wastes generated from agro-industrial and food processing opens the perspective for a wide range of benefits. In particular, legume residues are produced yearly in very large amounts and may represent an interesting source of plant proteins that contribute to satisfying the steadily increasing global protein demand. Innovative biorefinery extraction cascades may also enable the recovery of further bioactive molecules and fibers from these insufficiently tapped biomass streams. This review article gives a summary of the potential for the valorization of legume residual streams resulting from agro-industrial processing and more particularly for pea, green bean and chickpea by-products/wastes. Valuable information on the annual production volumes, geographical origin and state-of-the-art technologies for the extraction of proteins, fibers and other bioactive molecules from this source of biomass, is exhaustively listed and discussed. Finally, promising applications, already using the recovered fractions from pea, bean and chickpea residues for the formulation of feed, food, cosmetic and packaging products, are listed and discussed
Models predicting the growth response to growth hormone treatment in short children independent of GH status, birth size and gestational age
<p>Abstract</p> <p>Background</p> <p>Mathematical models can be used to predict individual growth responses to growth hormone (GH) therapy. The aim of this study was to construct and validate high-precision models to predict the growth response to GH treatment of short children, independent of their GH status, birth size and gestational age. As the GH doses are included, these models can be used to individualize treatment.</p> <p>Methods</p> <p>Growth data from 415 short prepubertal children were used to construct models for predicting the growth response during the first years of GH therapy. The performance of the models was validated with data from a separate cohort of 112 children using the same inclusion criteria.</p> <p>Results</p> <p>Using only auxological data, the model had a standard error of the residuals (SD<sub>res</sub>), of 0.23 SDS. The model was improved when endocrine data (GH<sub>max </sub>profile, IGF-I and leptin) collected before starting GH treatment were included. Inclusion of these data resulted in a decrease of the SD<sub>res </sub>to 0.15 SDS (corresponding to 1.1 cm in a 3-year-old child and 1.6 cm in a 7-year old). Validation of these models with a separate cohort, showed similar SD<sub>res </sub>for both types of models. Preterm children were not included in the Model group, but predictions for this group were within the expected range.</p> <p>Conclusion</p> <p>These prediction models can with high accuracy be used to identify short children who will benefit from GH treatment. They are clinically useful as they are constructed using data from short children with a broad range of GH secretory status, birth size and gestational age.</p
Plant cell culture technology in the cosmetics and food industries : current state and future trends
The production of drugs, cosmetics, and food which are derived from plant cell and tissue cultures has a long tradition. The emerging trend of manufacturing cosmetics and food products in a natural and sustainable manner has brought a new wave in plant cell culture technology over the past 10 years. More than 50 products based on extracts from plant cell cultures have made their way into the cosmetics industry during this time, whereby the majority is produced with plant cell suspension cultures. In addition, the first plant cell culture-based food supplement ingredients, such as Echigena Plus and Teoside 10, are now produced at production scale. In this mini review, we discuss the reasons for and the characteristics as well as the challenges of plant cell culture-based productions for the cosmetics and food industries. It focuses on the current state of the art in this field. In addition, two examples of the latest developments in plant cell culture-based food production are presented, that is, superfood which boosts health and food that can be produced in the lab or at home
A review of bioanalytical techniques for evaluation of cannabis (Marijuana, weed, Hashish) in human hair
Cannabis products (marijuana, weed, hashish) are among the most widely abused psychoactive drugs in the world, due to their euphorigenic and anxiolytic properties. Recently, hair analysis is of great interest in analytical, clinical, and forensic sciences due to its non-invasiveness, negligible risk of infection and tampering, facile storage, and a wider window of detection. Hair analysis is now widely accepted as evidence in courts around the world. Hair analysis is very feasible to complement saliva, blood tests, and urinalysis. In this review, we have focused on state of the art in hair analysis of cannabis with particular attention to hair sample preparation for cannabis analysis involving pulverization, extraction and screening techniques followed by confirmatory tests (e.g., GC–MS and LC–MS/MS). We have reviewed the literature for the past 10 years’ period with special emphasis on cannabis quantification using mass spectrometry. The pros and cons of all the published methods have also been discussed along with the prospective future of cannabis analysis
- …