791 research outputs found

    Order parameter symmetries for magnetic and superconducting instabilities: Bethe-Salpeter analysis of functional renormalization-group solutions

    Full text link
    The Bethe-Salpeter equation is combined with the temperature-cutoff functional renormalization group approach to analyze the order parameter structure for the leading instabilities of the 2D t-t' Hubbard model. We find significant deviations from pure s-, d-, or p-wave forms, which is due to the frustration of antiferromagnetism at small and intermediate t'. With adding a direct antiferromagnetic spin-exchange coupling the eigenfunctions in the particle-hole channel have extended s-wave form, while in the particle-particle singlet pairing channel a higher angular momentum component arises besides the standard d-wave symmetry, which flattens the angular dependence of the gap. For t' closer to 1/2 we find a delicate competition of ferromagnetism and triplet pairing with a nontrivial pair-wavefunction.Comment: 4 pages, 4 figures, RevTe

    Quasiparticle anisotropy and pseudogap formation from the weak-coupling renormalization group point of view

    Full text link
    Using the one-loop functional renormalization group technique we evaluate the self-energy in the weak-coupling regime of the 2D t-t' Hubbard model. At van Hove (vH) band fillings and at low temperatures the quasiparticle weight along the Fermi surface (FS) continuously vanishes on approaching the (pi,0) point where the quasiparticle concept is invalid. Away from vH band fillings the quasiparticle peak is formed inside an anisotropic pseudogap and the self-energy has the conventional Fermi-liquid characteristics near the Fermi level. The spectral weight of the quasiparticle features is reduced on parts of the FS between the near vicinity of hot spots and the FS points closest to (pi,0) and (0,pi).Comment: 4 pages, 4 figures, RevTe

    Doping Evolution of Oxygen K-edge X-ray Absorption Spectra in Cuprate Superconductors

    Full text link
    We study oxygen K-edge x-ray absorption spectroscopy (XAS) and investigate the validity of the Zhang-Rice singlet (ZRS) picture in overdoped cuprate superconductors. Using large-scale exact diagonalization of the three-orbital Hubbard model, we observe the effect of strong correlations manifesting in a dynamical spectral weight transfer from the upper Hubbard band to the ZRS band. The quantitative agreement between theory and experiment highlights an additional spectral weight reshuffling due to core-hole interaction. Our results confirm the important correlated nature of the cuprates and elucidate the changing orbital character of the low-energy quasi-particles, but also demonstrate the continued relevance of the ZRS even in the overdoped region.Comment: Original: 5 pages, 4 figures. Replaced: 6 pages and 4 figures, with updated title and conten

    Flux Periodicities in Loops of Nodal Superconductors

    Get PDF
    Supercurrents in superconducting flux threaded loops are expected to oscillate with the magnetic flux with a period of hc/2e. This is indeed true for s-wave superconductors larger than the coherence length xi_0. Here we show that for superconductors with gap nodes, there is no such strict condition for the supercurrent to be hc/2e rather than hc/e periodic. For nodal superconductors, the flux induced Doppler shift of the near nodal states leads to a flux dependent occupation probability of quasi-particles circulating clockwise and counter clockwise around the loop, which leads to an hc/e periodic component of the supercurrent, even at zero temperature. We analyze this phenomenon on a cylinder in an approximative analytic approach and also numerically within the framework of the BCS theory. Specifically for d-wave pairing, we show that the hc/e periodic current component decreases with the inverse radius of the loop and investigate its temperature dependence

    Zincalstibite-9R: the first nine-layer polytype with the layered double hydroxide structure-type

    Get PDF
    Zincalstibite-9R, a new polytype in the hydrotalcite supergroup is reported from the Monte Avanza mine, Italy. It occurs as pale blue curved disc-like tablets flattened on {001} intergrown to form rosettes typically less than 50 μm in diameter, with cyanophyllite and linarite in cavities in baryte. Zincalstibite-9R is uniaxial (−), with refractive indices ω = 1.647(2) and ε = 1.626(2) measured in white light. The empirical formula (based on 12 OH groups) is (Zn^(2+)_(1.09)Cu^(2+)_(0.87)Al_(0.04))_(Σ2.00)Al_(1.01) (Sb^(5+)_(0.97)Si_(0.02))Σ_(0.99)(OH)_(12), and the ideal formula is (Zn,Cu)_2Al(OH)_6[Sb(OH)_6]. Zincalstibite-9R crystallizes in space group R3İ, with ɑ = 5.340(2), c = 88.01(2) Å, V = 2173.70(15) Å^3 and Z = 9. The crystal structure was refined to R_1 = 0.0931 for 370 unique reflections [F_o > 4σ(F)] and R_1 = 0.0944 for all 381 unique reflections. It has the longest periodic layer stacking sequence for a layered double hydroxide compound reported to date

    Predominantly Superconducting Origin of Large Energy Gaps in Underdoped Bi2Sr2CaCu2O8-d from Tunneling Spectroscopy

    Get PDF
    New tunneling data are reported in underdoped Bi2Sr2CaCu2O8-d using superconductor-insulator-superconductor break junctions. Energy gaps, Delta, of 51+2, 54+2 and 57+3 meV are observed for three crystals with Tc=77, 74, and 70 K respectively. These energy gaps are nearly three times larger than for overdoped crystals with similar Tc. Detailed examination of tunneling spectra over a wide doping range from underdoped to overdoped, including the Josephson IcRn product, indicate that these energy gaps are predominantly of superconducting origin.Comment: 10 pages, 4 figures, 1 tabl

    Initial Quantitative Proteomic Map of 28 Mouse Tissues Using the SILAC Mouse

    No full text
    Identifying the building blocks of mammalian tissues is a precondition for understanding their function. In particular, global and quantitative analysis of the proteome of mammalian tissues would point to tissue-specific mechanisms and place the function of each protein in a whole-organism perspective. We performed proteomic analyses of 28 mouse tissues using high-resolution mass spectrometry and used a mix of mouse tissues labeled via stable isotope labeling with amino acids in cell culture as a "spike-in" internal standard for accurate protein quantification across these tissues. We identified a total of 7,349 proteins and quantified 6,974 of them. Bioinformatic data analysis showed that physiologically related tissues clustered together and that highly expressed proteins represented the characteristic tissue functions. Tissue specialization was reflected prominently in the proteomic profiles and is apparent already in their hundred most abundant proteins. The proportion of strictly tissue-specific proteins appeared to be small. However, even proteins with household functions, such as those in ribosomes and spliceosomes, can have dramatic expression differences among tissues. We describe a computational framework with which to correlate proteome profiles with physiological functions of the tissue. Our data will be useful to the broad scientific community as an initial atlas of protein expression of a mammalian species

    Validity of the rigid band picture for the t-J model

    Full text link
    We present an exact diagonalization study of the doping dependence of the single particle Green's function in 16, 18 and 20 site clusters of t-J model. We find evidence for rigid-band behaviour starting from the half-filled case: upon doping, the topmost states of the quasiparticle band observed in the photoemisson spectrum at half-filling cross the chemical potential and reappear as the lowermost states of the inverse photoemission spectrum. Features in the inverse photoemission spectra which are inconsistent with rigid-band behaviour are shown to originate from the nontrivial point group symmetry of the ground state with two holes, which enforces different selection rules than at half-filling. Deviations from rigid band behaviour which lead to the formation of the `large Fermi surface' in the momentum distribution occur only at energies far from the chemical potential. A Luttinger Fermi surface and a nearest neighbor hopping band do not exist.Comment: Remarks: Revtex file + 7 figures attached as compressed postscript files Figures can also be obtained by ordinary mail on reques
    • …
    corecore