40,542 research outputs found

    Magnetically tuned spin dynamics resonance

    Full text link
    We present the experimental observation of a magnetically tuned resonance phenomenon resulting from spin mixing dynamics of ultracold atomic gases. In particular we study the magnetic field dependence of spin conversion in F=2 87Rb spinor condensates in the crossover from interaction dominated to quadratic Zeeman dominated dynamics. We discuss the observed phenomenon in the framework of spin dynamics as well as matter wave four wave mixing. Furthermore we show that the validity range of the single mode approximation for spin dynamics is significantly extended in the regime of high magnetic field

    Analytical ground state for the three-band Hubbard model

    Full text link
    For the calculation of charge excitations as those observed in, e.g., photo-emission spectroscopy or in electron-energy loss spectroscopy, a correct description of ground-state charge properties is essential. In strongly correlated systems like the undoped cuprates this is a highly non-trivial problem. In this paper we derive a non-perturbative analytical approximation for the ground state of the three-band Hubbard model on an infinite, half filled CuO_2 plane. By comparison with Projector Quantum Monte Carlo calculations it is shown that the resulting expressions correctly describe the charge properties of the ground state. Relations to other approaches are discussed. The analytical ground state preserves size consistency and can be generalized for other geometries, while still being both easy to interpret and to evaluate.Comment: REVTeX, 8 pages, 6 figures, to appear in Phys. Rev.

    Ultracold quantum gases in triangular optical lattices

    Full text link
    Over the last years the exciting developments in the field of ultracold atoms confined in optical lattices have led to numerous theoretical proposals devoted to the quantum simulation of problems e.g. known from condensed matter physics. Many of those ideas demand for experimental environments with non-cubic lattice geometries. In this paper we report on the implementation of a versatile three-beam lattice allowing for the generation of triangular as well as hexagonal optical lattices. As an important step the superfluid-Mott insulator (SF-MI) quantum phase transition has been observed and investigated in detail in this lattice geometry for the first time. In addition to this we study the physics of spinor Bose-Einstein condensates (BEC) in the presence of the triangular optical lattice potential, especially spin changing dynamics across the SF-MI transition. Our results suggest that below the SF-MI phase transition, a well-established mean-field model describes the observed data when renormalizing the spin-dependent interaction. Interestingly this opens new perspectives for a lattice driven tuning of a spin dynamics resonance occurring through the interplay of quadratic Zeeman effect and spin-dependent interaction. We finally discuss further lattice configurations which can be realized with our setup.Comment: 19 pages, 7 figure

    Linear Sigma Models with Torsion

    Full text link
    Gauged linear sigma models with (0,2) supersymmetry allow a larger choice of couplings than models with (2,2) supersymmetry. We use this freedom to find a fully linear construction of torsional heterotic compactifications, including models with branes. As a non-compact example, we describe a family of metrics which correspond to deformations of the heterotic conifold by turning on H-flux. We then describe compact models which are gauge-invariant only at the quantum level. Our construction gives a generalization of symplectic reduction. The resulting spaces are non-Kahler analogues of familiar toric spaces like complex projective space. Perturbatively conformal models can be constructed by considering intersections.Comment: 40 pages, LaTeX, 1 figure; references added; a new section on supersymmetry added; quantization condition revisite

    Evolution of a spinor condensate: coherent dynamics, dephasing and revivals

    Full text link
    We present measurements and a theoretical model for the interplay of spin dependent interactions and external magnetic fields in atomic spinor condensates. We highlight general features like quadratic Zeeman dephasing and its influence on coherent spin mixing processes by focusing on a specific coherent superposition state in a F=1 87^{87}Rb Bose-Einstein condensate. In particular, we observe the transition from coherent spinor oscillations to thermal equilibration

    N=1 Non-Abelian Tensor Multiplet in Four Dimensions

    Full text link
    We carry out the N=1 supersymmetrization of a physical non-Abelian tensor with non-trivial consistent couplings in four dimensions. Our system has three multiplets: (i) The usual non-Abelian vector multiplet (VM) (A_\mu{}^I, \lambda^I), (ii) A non-Abelian tensor multiplet (TM) (B_{\mu\nu}{}^I, \chi^I, \varphi^I), and (iii) A compensator vector multiplet (CVM) (C_\mu{}^I, \rho^I). All of these multiplets are in the adjoint representation of a non-Abelian group G. Unlike topological theory, all of our fields are propagating with kinetic terms. The C_\mu{}^I-field plays the role of a Stueckelberg compensator absorbed into the longitudinal component of B_{\mu\nu}{}^I. We give not only the component lagrangian, but also a corresponding superspace reformulation, reconfirming the total consistency of the system. The adjoint representation of the TM and CVM is further generalized to an arbitrary real representation of general SO(N) gauge group. We also couple the globally N=1 supersymmetric system to supergravity, as an additional non-trivial confirmation.Comment: 18 pages, no figur

    A Note on Flux Induced Superpotentials in String Theory

    Get PDF
    Non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory. Gukov has conjectured the explicit form of this superpotential. We check this conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well as for warped M-theory compactifications on Spin(7) holonomy manifolds, by performing a Kaluza-Klein reduction.Comment: 19 pages, no figure
    corecore