10 research outputs found
Microcallus formation from maize protoplasts prepared from embryogenic callus
Conditions have been developed that induce maize ( Zea mays L.) protoplasts to re-synthesize cell walls and to initiate cell divisions. Two types of embryogenic maize callus were used as a source of protoplasts: a heterogeneous callus (Type I) derived from immature embryos after three weeks in culture, and a friable, rapidly growing callus (Type II) selected from portions of the Type I callus. Many variables in the growth conditions of the donor tissue (type of medium, transfer schedule, age of callus), protoplast isolation solutions (pH, osmolarity, type and concentration of cell wall hydrolyzing enzymes, addition of polyamines) and conditions (amount of time in enzyme, amount of tissue per volume of enzyme incubation medium, agitation, preplasmolysis of source tissue, type of callus), and purification procedures (filtration and-or flotation), were found to affect both yield and viability of protoplasts (based upon fluorescein-diacetate staining). Our isolation procedure yielded high numbers of viable, uninucleated maize callus protoplasts which were densely cytoplasmic and varied in size from 20 to 50 μm in diameter. Protoplasts plated in solid medium formed walls and divided several times. Of several gelling agents tested for protoplast propagation, only agarose resulted in protoplasts capable of sustained divisions leading to the formation of microcalli. Plating efficiency was established over a wide range of protoplast densities (10 3 –10 7 protoplasts/ml). Highest plating efficiency (25%) was obtained at 1·10 6 protoplasts/ml). The resulting microcalli grew to be dense clusters of about 0.1–0.5 mm in diameter and then stopped growing. Nurse cultures of maize and carrot ( Daucus carota L.), were used to establish that individual protoplasts (not contaminating cells or cell clusters) formed walls and divided. Nurse cultures also increased the efficiency of microcallus formation from protoplasts.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47471/1/425_2004_Article_BF00392367.pd
Microcallus growth from maize protoplasts
Maize ( Zea mays L. ) protoplasts obtained from Type I and Type II calli from several genotypes were shown to be capable of synthesizing cell walls and forming small clusters of cells. The medium used also supported cluster formation from protoplasts obtained from root tips. The effects of various additions to the medium (such as casein hydrolysate, coconut water, amino acids, sugars, phytohormones, nitrate, calcium, and dimethylsulfoxide as well as pH variations on cellcluster formation were determined. The method of culture (protoplasts plated in agarose or supported in alginate beads in liquid medium) as well as several components of the medium were found to be critical for microcallus formation. Protoplasts obtained from embryogenic Type I callus and cultured in the medium of C. Nitsch and J.P. Nitsch (1967, Planta 72 , 355–370) modified by various additions (NN 67-mod medium) were affected most by various sugars, casein hydrolysate, coconut water, and a combination of the auxins napthalene-1-acetic acid (2 mg/l) and 2,4-dichlorophenoxyacetic acid (0.1 mg/l), and the cytokinin N 6 -benzylaminopurine (0.5 mg/l). Cluster size in the agarose culture system was from 0.1 to 0.5 mm diameter and in the alginate culture system, up to 2.0 mm diameter.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47472/1/425_2004_Article_BF00395067.pd