11,919 research outputs found

    Dynamics of fluctuations in an optical analog of the Laval nozzle

    Full text link
    Using the analogy between the description of coherent light propagation in a medium with Kerr nonlinearity by means of nonlinear Schr\"odinger equation and that of a dissipationless liquid we propose an optical analogue of the Laval nozzle. The optical Laval nozzle will allow one to form a transonic flow in which one can observe and study a very unusual dynamics of classical and quantum fluctuations including analogue of the Hawking radiation of real black holes. Theoretical analysis of this dynamics is supported by numerical calculations and estimates for a possible experimental setup are presented.Comment: 7 pages, 4 figure

    Black hole lasers in Bose-Einstein condensates

    Full text link
    We consider elongated condensates that cross twice the speed of sound. In the absence of periodic boundary conditions, the phonon spectrum possesses a discrete and finite set of complex frequency modes that induce a laser effect. This effect constitutes a dynamical instability and is due to the fact that the supersonic region acts as a resonant cavity. We numerically compute the complex frequencies and density-density correlation function. We obtain patterns with very specific signatures. In terms of the gravitational analogy, the flows we consider correspond to a pair of black hole and white hole horizons, and the laser effect can be conceived as a self-amplified Hawking radiation. This is verified by comparing the outgoing flux at early time with the standard black hole radiation.Comment: iopams, 37 pages, 14 figures, 1 table; for associated gif animations, see http://people.sissa.it/~finazzi/bec_bhlasers/movies/ or http://iopscience.iop.org/1367-2630/12/9/095015/media. Published on New. J. Phys. (http://iopscience.iop.org/1367-2630/12/9/095015/). V2: few new comments, modified figure

    Kondo Effect in Single Quantum Dot Systems --- Study with Numerical Renormalization Group Method ---

    Full text link
    The tunneling conductance is calculated as a function of the gate voltage in wide temperature range for the single quantum dot systems with Coulomb interaction. We assume that two orbitals are active for the tunneling process. We show that the Kondo temperature for each orbital channel can be largely different. The tunneling through the Kondo resonance almost fully develops in the region T \lsim 0.1 T_{K}^{*} \sim 0.2 T_{K}^{*}, where TKT_{K}^{*} is the lowest Kondo temperature when the gate voltage is varied. At high temperatures the conductance changes to the usual Coulomb oscillations type. In the intermediate temperature region, the degree of the coherency of each orbital channel is different, so strange behaviors of the conductance can appear. For example, the conductance once increases and then decreases with temperature decreasing when it is suppressed at T=0 by the interference cancellation between different channels. The interaction effects in the quantum dot systems lead the sensitivities of the conductance to the temperature and to the gate voltage.Comment: 22 pages, 18 figures, LaTeX, to be published in J. Phys. Soc. Jpn. Vol. 67 No. 7 (1998

    Microwave Gaseous Discharges

    Get PDF
    Contains reports on six research projects.Atomic Energy Commission under Contract AT(30-1) 184

    Universal dynamical decoherence control of noisy single-and multi-qubit systems

    Full text link
    In this article we develop, step by step, the framework for universal dynamical control of two-level systems (TLS) or qubits experiencing amplitude- or phase-noise (AN or PN) due to coupling to a thermal bath. A comprehensive arsenal of modulation schemes is introduced and applied to either AN or PN, resulting in completely analogous formulae for the decoherence rates, thus underscoring the unified nature of this universal formalism. We then address the extension of this formalism to multipartite decoherence control, where symmetries are exploited to overcome decoherence.Comment: 28 pages, 4 figure

    Micrometer-Thin Crystalline-Silicon Solar Cells Integrating Numerically Optimized 2-D Photonic Crystals

    Full text link
    A 2-D photonic crystal was integrated experimentally into a thin-film crystalline-silicon solar cell of 1-{\mu}m thickness, after numerical optimization maximizing light absorption in the active material. The photonic crystal boosted the short-circuit current of the cell, but it also damaged its open-circuit voltage and fill factor, which led to an overall decrease in performances. Comparisons between modeled and actual optical behaviors of the cell, and between ideal and actual morphologies, show the global robustness of the nanostructure to experimental deviations, but its particular sensitivity to the conformality of the top coatings and the spread in pattern dimensions, which should not be neglected in the optical model. As for the electrical behavior, the measured internal quantum efficiency shows the strong parasitic absorptions from the transparent conductive oxide and from the back-reflector, as well as the negative impact of the nanopattern on surface passivation. Our exemplifying case, thus, illustrates and experimentally confirms two recommendations for future integration of surface nanostructures for light trapping purposes: 1) the necessity to optimize absorption not for the total stack but for the single active material, and 2) the necessity to avoid damage to the active material by pattern etching.Comment: Authors' postprint version - Editor's pdf published online on Nov.

    Statistical Mechanics of Soft Margin Classifiers

    Full text link
    We study the typical learning properties of the recently introduced Soft Margin Classifiers (SMCs), learning realizable and unrealizable tasks, with the tools of Statistical Mechanics. We derive analytically the behaviour of the learning curves in the regime of very large training sets. We obtain exponential and power laws for the decay of the generalization error towards the asymptotic value, depending on the task and on general characteristics of the distribution of stabilities of the patterns to be learned. The optimal learning curves of the SMCs, which give the minimal generalization error, are obtained by tuning the coefficient controlling the trade-off between the error and the regularization terms in the cost function. If the task is realizable by the SMC, the optimal performance is better than that of a hard margin Support Vector Machine and is very close to that of a Bayesian classifier.Comment: 26 pages, 12 figures, submitted to Physical Review

    Modified Perturbation Theory Applied to Kondo-Type Transport through a Quantum Dot under a Magnetic Field

    Full text link
    Linear conductance through a quantum dot is calculated under a finite magnetic field using the modified perturbation theory. The method is based on the second-order perturbation theory with respect to the Coulomb repulsion, but the self-energy is modified to reproduce the correct atomic limit and to fulfill the Friedel sum rule exactly. Although this method is applicable only to zero temperature in a strict sense, it is approximately extended to finite temperatures. It is found that the conductance near electron-hole symmetry is suppressed by the application of the magnetic field at low temperatures. Positive magnetoconductance is observed in the case of large electron-hole asymmetry.Comment: 4pages, 5 figure

    Microwave Gaseous Discharges

    Get PDF
    Contains research objectives and reports on five research projects
    corecore