3 research outputs found

    Computation of the Vortex Free Energy in SU(2) Gauge Theory

    Get PDF
    We present the first measurement of the vortex free-energy order parameter at weak coupling for SU(2) in simulations employing multihistogram methods. The result shows that the excitation probability for a sufficiently thick vortex in the vacuum tends to unity. This is rigorously known to provide a necessary and sufficient condition for maintaining confinement at weak coupling in SU(N) gauge theories.Comment: 7 pages, LaTeX with 3 eps figures, minor changes, replacement of Fig.

    A Planck-scale axion and SU(2) Yang-Mills dynamics: Present acceleration and the fate of the photon

    Full text link
    From the time of CMB decoupling onwards we investigate cosmological evolution subject to a strongly interacting SU(2) gauge theory of Yang-Mills scale Λ∼10−4\Lambda\sim 10^{-4} eV (masquerading as the U(1)YU(1)_{Y} factor of the SM at present). The viability of this postulate is discussed in view of cosmological and (astro)particle physics bounds. The gauge theory is coupled to a spatially homogeneous and ultra-light (Planck-scale) axion field. As first pointed out by Frieman et al., such an axion is a viable candidate for quintessence, i.e. dynamical dark energy, being associated with today's cosmological acceleration. A prediction of an upper limit Δtmγ=0\Delta t_{m_\gamma=0} for the duration of the epoch stretching from the present to the point where the photon starts to be Meissner massive is obtained: Δtmγ=0∼2.2\Delta t_{m_\gamma=0}\sim 2.2 billion years.Comment: v3: consequences of an error in evolution equation for coupling rectified, only a minimal change in physics results, two refs. adde

    Nonperturbative approach to Yang-Mills thermodynamics

    Full text link
    An analytical and nonperturbative approach to SU(2) and SU(3) Yang-Mills thermodynamics is developed and applied. Each theory comes in three phases: A deconfining, a preconfining, and a confining one. We show how macroscopic and inert scalar fields form in each phase and how they determine the ground-state physics and the properties of the excitations. While the excitations in the deconfining and preconfining phase are massless or massive gauge modes the excitations in the confining phase are massless or massive spin-1/2 fermions. The nature of the two phase transitions is investigated for each theory. We compute the temperature evolution of thermodynamical quantities in the deconfining and preconfining phase and estimate the density of states in the confining phase. Some implications for particle physics and cosmology are discussed.Comment: 92 pages, 35 figures, v4: more typos corrected, modification in evolution equations for effective couplings, consequences thereof implemented, there will be an erratum to the journal-published versio
    corecore