34 research outputs found

    Quantum Multiobservable Control

    Full text link
    We present deterministic algorithms for the simultaneous control of an arbitrary number of quantum observables. Unlike optimal control approaches based on cost function optimization, quantum multiobservable tracking control (MOTC) is capable of tracking predetermined homotopic trajectories to target expectation values in the space of multiobservables. The convergence of these algorithms is facilitated by the favorable critical topology of quantum control landscapes. Fundamental properties of quantum multiobservable control landscapes that underlie the efficiency of MOTC, including the multiobservable controllability Gramian, are introduced. The effects of multiple control objectives on the structure and complexity of optimal fields are examined. With minor modifications, the techniques described herein can be applied to general quantum multiobjective control problems.Comment: To appear in Physical Review

    Quantum Pareto Optimal Control

    Full text link
    We describe algorithms, and experimental strategies, for the Pareto optimal control problem of simultaneously driving an arbitrary number of quantum observable expectation values to their respective extrema. Conventional quantum optimal control strategies are less effective at sampling points on the Pareto frontier of multiobservable control landscapes than they are at locating optimal solutions to single observable control problems. The present algorithms facilitate multiobservable optimization by following direct paths to the Pareto front, and are capable of continuously tracing the front once it is found to explore families of viable solutions. The numerical and experimental methodologies introduced are also applicable to other problems that require the simultaneous control of large numbers of observables, such as quantum optimal mixed state preparation.Comment: Submitted to Physical Review

    A Descent Method for Equality and Inequality Constrained Multiobjective Optimization Problems

    Full text link
    In this article we propose a descent method for equality and inequality constrained multiobjective optimization problems (MOPs) which generalizes the steepest descent method for unconstrained MOPs by Fliege and Svaiter to constrained problems by using two active set strategies. Under some regularity assumptions on the problem, we show that accumulation points of our descent method satisfy a necessary condition for local Pareto optimality. Finally, we show the typical behavior of our method in a numerical example

    Decay of Classical Chaotic Systems - the Case of the Bunimovich Stadium

    Full text link
    The escape of an ensemble of particles from the Bunimovich stadium via a small hole has been studied numerically. The decay probability starts out exponentially but has an algebraic tail. The weight of the algebraic decay tends to zero for vanishing hole size. This behaviour is explained by the slow transport of the particles close to the marginally stable bouncing ball orbits. It is contrasted with the decay function of the corresponding quantum system.Comment: 16 pages, RevTex, 3 figures are available upon request from [email protected], to be published in Phys.Rev.

    Multi-objective optimal control : a direct approach

    No full text
    The chapter introduces an approach to solve optimal control problems with multiple conflicting objectives. The approach proposed in this chapter generates sets of Pareto optimal control laws that satisfy a set of boundary conditions and path constraints. The chapter starts by introducing basic concepts of multi-objective optimisation and optimal control theory and then presents a general formulation of multi-objective optimal control problems in scalar form using the Pascoletti-Serafini scalarisation method. From this scalar form the chapter derives the first order necessary conditions for local optimality and develops a direct transcription method by Finite Elements in Time (DFET) that turns the infinite dimensional multi-objective optimal control problem into a finite dimensional multi-objective nonlinear programming problem (MONLP). The transcription method is proven to be locally convergent under some assumptions on the nature of the optimal control problem. A memetic agent-based optimisation approach is then proposed to solve the MONLP problem and return a partial reconstruction of the globally optimal Pareto set. An illustrative example concludes the chapter
    corecore