34 research outputs found
Quantum Multiobservable Control
We present deterministic algorithms for the simultaneous control of an
arbitrary number of quantum observables. Unlike optimal control approaches
based on cost function optimization, quantum multiobservable tracking control
(MOTC) is capable of tracking predetermined homotopic trajectories to target
expectation values in the space of multiobservables. The convergence of these
algorithms is facilitated by the favorable critical topology of quantum control
landscapes. Fundamental properties of quantum multiobservable control
landscapes that underlie the efficiency of MOTC, including the multiobservable
controllability Gramian, are introduced. The effects of multiple control
objectives on the structure and complexity of optimal fields are examined. With
minor modifications, the techniques described herein can be applied to general
quantum multiobjective control problems.Comment: To appear in Physical Review
Quantum Pareto Optimal Control
We describe algorithms, and experimental strategies, for the Pareto optimal
control problem of simultaneously driving an arbitrary number of quantum
observable expectation values to their respective extrema. Conventional quantum
optimal control strategies are less effective at sampling points on the Pareto
frontier of multiobservable control landscapes than they are at locating
optimal solutions to single observable control problems. The present algorithms
facilitate multiobservable optimization by following direct paths to the Pareto
front, and are capable of continuously tracing the front once it is found to
explore families of viable solutions. The numerical and experimental
methodologies introduced are also applicable to other problems that require the
simultaneous control of large numbers of observables, such as quantum optimal
mixed state preparation.Comment: Submitted to Physical Review
A Descent Method for Equality and Inequality Constrained Multiobjective Optimization Problems
In this article we propose a descent method for equality and inequality
constrained multiobjective optimization problems (MOPs) which generalizes the
steepest descent method for unconstrained MOPs by Fliege and Svaiter to
constrained problems by using two active set strategies. Under some regularity
assumptions on the problem, we show that accumulation points of our descent
method satisfy a necessary condition for local Pareto optimality. Finally, we
show the typical behavior of our method in a numerical example
Decay of Classical Chaotic Systems - the Case of the Bunimovich Stadium
The escape of an ensemble of particles from the Bunimovich stadium via a
small hole has been studied numerically. The decay probability starts out
exponentially but has an algebraic tail. The weight of the algebraic decay
tends to zero for vanishing hole size. This behaviour is explained by the slow
transport of the particles close to the marginally stable bouncing ball orbits.
It is contrasted with the decay function of the corresponding quantum system.Comment: 16 pages, RevTex, 3 figures are available upon request from
[email protected], to be published in Phys.Rev.
Multi-objective optimal control : a direct approach
The chapter introduces an approach to solve optimal control problems with multiple conflicting objectives. The approach proposed in this chapter generates sets of Pareto optimal control laws that satisfy a set of boundary conditions and path constraints. The chapter starts by introducing basic concepts of multi-objective optimisation and optimal control theory and then presents a general formulation of multi-objective optimal control problems in scalar form using the Pascoletti-Serafini scalarisation method. From this scalar form the chapter derives the first order necessary conditions for local optimality and develops a direct transcription method by Finite Elements in Time (DFET) that turns the infinite dimensional multi-objective optimal control problem into a finite dimensional multi-objective nonlinear programming problem (MONLP). The transcription method is proven to be locally convergent under some assumptions on the nature of the optimal control problem. A memetic agent-based optimisation approach is then proposed to solve the MONLP problem and return a partial reconstruction of the globally optimal Pareto set. An illustrative example concludes the chapter