710 research outputs found
A study of the thermal behavior of living biological tissue with application to thermal control of protective suits
Investigating biothermal model of living tissue for application to thermal control of protective clothin
Removal of metabolic heat from man working in a protective suit
A water cooled garment was constructed and used to study the characteristics of independent regional cooling of the body in contrast to the current practice of uniform cooling. The cooling pads in the garment were grouped to provide independent control of water inlet temperatures and flow rates to six regions: head, upper torso, lower torso, arms, thighs, and lower legs. Experiments with and without the cooling suit were conducted with five test subjects standing and walking on a treadmill on selected schedules. Steady state and, to a lesser extent, transient characteristics were obtained
Steady state and transient temperature distributions in the human thigh covered with a cooling pad
An analytical and experimental study was done on the performance of cooling pads attached to a human thigh. Each cooling pad consisted of a long, water cooled tube formed into a serpentine shape with uniform spacing between the parallel sections. The analytical work developed a cylindrical model for the human thigh. The transient times predicted by this model ranged from 25 to 80 minutes, which is reasonably close to the experimental results. Calculated and measured steady state temperature profiles were in fair agreement. The transient times associated with a change from a high metabolic rate of 1800 Btu/hr (528 w) to a low level of 300 Btu/hr (88 w), were found to be about 120 minutes. A change from 300 Btu/hr (264 w) to 300 Btu/hr (88 w) resulted in 90 to 100 minute transients. However, the transient times for a change in metabolic rate in the opposite direction from 300 Btu/hr (88 w) to 1800 Btu/hr (528 w) were 40 to 60 minutes
Physiological and engineering study of advanced thermoregulatory systems for extravehicular space suits
Investigations of thermal control for extravehicular space suits are reported. The characteristics of independent cooling of temperature and removal of excess heat from separate regions of the body, and the applications of heat pipes in protective suits are discussed along with modeling of the human thermal system
Tracing and quantifying groundwater inflow into lakes using a simple method for radon-222 analysis
Due to its high activities in groundwater, the radionuclide <sup>222</sup>Rn is a sensitive natural tracer to detect and quantify groundwater inflow into lakes, provided the comparatively low activities in the lakes can be measured accurately. Here we present a simple method for radon measurements in the low-level range down to 3 Bq m<sup>&minus;3</sup>, appropriate for groundwater-influenced lakes, together with a concept to derive inflow rates from the radon budget in lakes. The analytical method is based on a commercially available radon detector and combines the advantages of established procedures with regard to efficient sampling and sensitive analysis. Large volume (12 l) water samples are taken in the field and analyzed in the laboratory by equilibration with a closed air loop and alpha spectrometry of radon in the gas phase. After successful laboratory tests, the method has been applied to a small dredging lake without surface in- or outflow in order to estimate the groundwater contribution to the hydrological budget. The inflow rate calculated from a <sup>222</sup>Rn balance for the lake is around 530 m³ per day, which is comparable to the results of previous studies. In addition to the inflow rate, the vertical and horizontal radon distribution in the lake provides information on the spatial distribution of groundwater inflow to the lake. The simple measurement and sampling technique encourages further use of radon to examine groundwater-lake water interaction
Tracing and quantifying groundwater inflow into lakes using radon-222
International audienceDue to its high activities in groundwater, the radionuclide 222Rn is a sensitive natural tracer to detect and quantify groundwater inflow into lakes, provided the comparatively low activities in the lakes can be measured accurately. Here we present a simple method for radon measurements in the low-level range down to 3 Bq m?3, appropriate for groundwater-influenced lakes, together with a concept to derive inflow rates from the radon budget in lakes. The analytical method is based on a commercially available radon detector and combines the advantages of established procedures with regard to efficient sampling and sensitive analysis. Large volume (12 l) water samples are taken in the field and analyzed in the laboratory by equilibration with a closed air loop and alpha spectrometry of radon in the gas phase. After successful laboratory tests, the method has been applied to a small dredging lake without surface in- or outflow in order to estimate the groundwater contribution to the hydrological budget. The inflow rate calculated from a 222Rn balance for the lake is around 530 m3 per day, which is comparable to the results of previous studies. In addition to the inflow rate, the vertical and horizontal radon distribution in the lake provides information on the spatial distribution of groundwater inflow to the lake. The simple measurement and sampling technique encourages further use of radon to examine groundwater-lake interaction
- …