5,188 research outputs found
Elastic response of filamentous networks with compliant crosslinks
Experiments have shown that elasticity of disordered filamentous networks
with compliant crosslinks is very different from networks with rigid
crosslinks. Here, we model and analyze filamentous networks as a collection of
randomly oriented rigid filaments connected to each other by flexible
crosslinks that are modeled as worm-like chains. For relatively large
extensions we allow for enthalpic stretching of crosslinks' backbones. We show
that for sufficiently high crosslink density, the network linear elastic
response is affine on the scale of the filaments' length. The nonlinear regime
can become highly nonaffine and is characterized by a divergence of the elastic
modulus at finite strain. In contrast to the prior predictions, we do not find
an asymptotic regime in which the differential elastic modulus scales linearly
with the stress, although an approximate linear dependence can be seen in a
transition from entropic to enthalpic regimes. We discuss our results in light
of the recent experiments.Comment: 10 pages, 11 figure
Efficient HTTP based I/O on very large datasets for high performance computing with the libdavix library
Remote data access for data analysis in high performance computing is
commonly done with specialized data access protocols and storage systems. These
protocols are highly optimized for high throughput on very large datasets,
multi-streams, high availability, low latency and efficient parallel I/O. The
purpose of this paper is to describe how we have adapted a generic protocol,
the Hyper Text Transport Protocol (HTTP) to make it a competitive alternative
for high performance I/O and data analysis applications in a global computing
grid: the Worldwide LHC Computing Grid. In this work, we first analyze the
design differences between the HTTP protocol and the most common high
performance I/O protocols, pointing out the main performance weaknesses of
HTTP. Then, we describe in detail how we solved these issues. Our solutions
have been implemented in a toolkit called davix, available through several
recent Linux distributions. Finally, we describe the results of our benchmarks
where we compare the performance of davix against a HPC specific protocol for a
data analysis use case.Comment: Presented at: Very large Data Bases (VLDB) 2014, Hangzho
Quantum key distribution using non-classical photon number correlations in macroscopic light pulses
We propose a new scheme for quantum key distribution using macroscopic
non-classical pulses of light having of the order 10^6 photons per pulse.
Sub-shot-noise quantum correlation between the two polarization modes in a
pulse gives the necessary sensitivity to eavesdropping that ensures the
security of the protocol. We consider pulses of two-mode squeezed light
generated by a type-II seeded parametric amplification process. We analyze the
security of the system in terms of the effect of an eavesdropper on the bit
error rates for the legitimate parties in the key distribution system. We also
consider the effects of imperfect detectors and lossy channels on the security
of the scheme.Comment: Modifications:added new eavesdropping attack, added more references
Submitted to Physical Review A [email protected]
Lifetime determination of excited states in Cd-106
Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106 Cd. The inedium-spin states of interest were populated by the Mo-98(C-12, 4n) Cd-106 reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the Mo-96(C-13, 3n)Cd-106 reaction performed at the Institut fur Kernphysik, Universitat zu Koln. The mean lifetime of the I-pi = 2(1)(+) state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps
Reduced tubulin tyrosination as an early marker of mercury toxicity in differentiating N2a cells
The aims of this work were to compare the effects of methyl mercury chloride and Thimerosal on neurite/process outgrowth and microtubule proteins in differentiating mouse N2a neuroblastoma and rat C6 glioma cells. Exposure for 4 h to sublethal concentrations of both compounds inhibited neurite outgrowth to a similar extent in both cells lines compared to controls. In the case of N2a cells, this inhibitory effect by both compounds was associated with a fall in the reactivity of western blots of cell extracts with monoclonal antibody T1A2, which recognises C-terminally tyrosinated α-tubulin. By contrast, reactivity with monoclonal antibody B512 (which recognises total α-tubulin) was unaffected at the same time point. These findings suggest that decreased tubulin tyrosination represents a neuron-specific early marker of mercury toxicity associated with impaired neurite outgrowth
Investigation of the thermal stability of Mg/Co periodic multilayers for EUV applications
We present the results of the characterization of Mg/Co periodic multilayers
and their thermal stability for the EUV range. The annealing study is performed
up to a temperature of 400\degree C. Images obtained by scanning transmission
electron microscopy and electron energy loss spectroscopy clearly show the good
quality of the multilayer structure. The measurements of the EUV reflectivity
around 25 nm (~49 eV) indicate that the reflectivity decreases when the
annealing temperature increases above 300\degreeC. X-ray emission spectroscopy
is performed to determine the chemical state of the Mg atoms within the Mg/Co
multilayer. Nuclear magnetic resonance used to determine the chemical state of
the Co atoms and scanning electron microscopy images of cross sections of the
Mg/Co multilayers reveal changes in the morphology of the stack from an
annealing temperature of 305\degreee;C. This explains the observed reflectivity
loss.Comment: Published in Applied Physics A: Materials Science \& Processing
Published at
http://www.springerlink.com.chimie.gate.inist.fr/content/6v396j6m56771r61/ 21
page
Operational experience with the GEM detector assembly lines for the CMS forward muon upgrade
The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
Combined search for the quarks of a sequential fourth generation
Results are presented from a search for a fourth generation of quarks
produced singly or in pairs in a data set corresponding to an integrated
luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in
2011. A novel strategy has been developed for a combined search for quarks of
the up and down type in decay channels with at least one isolated muon or
electron. Limits on the mass of the fourth-generation quarks and the relevant
Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a
simple extension of the standard model with a sequential fourth generation of
fermions. The existence of mass-degenerate fourth-generation quarks with masses
below 685 GeV is excluded at 95% confidence level for minimal off-diagonal
mixing between the third- and the fourth-generation quarks. With a mass
difference of 25 GeV between the quark masses, the obtained limit on the masses
of the fourth-generation quarks shifts by about +/- 20 GeV. These results
significantly reduce the allowed parameter space for a fourth generation of
fermions.Comment: Replaced with published version. Added journal reference and DO
- …
