17,596 research outputs found
Simulating Z_2 topological insulators with cold atoms in a one-dimensional optical lattice
We propose an experimental scheme to simulate and detect the properties of
time-reversal invariant topological insulators, using cold atoms trapped in
one-dimensional bichromatic optical lattices. This system is described by a
one-dimensional Aubry-Andre model with an additional SU(2) gauge structure,
which captures the essential properties of a two-dimensional Z2 topological
insulator. We demonstrate that topologically protected edge states, with
opposite spin orientations, can be pumped across the lattice by sweeping a
laser phase adiabatically. This process constitutes an elegant way to transfer
topologically protected quantum states in a highly controllable environment. We
discuss how density measurements could provide clear signatures of the
topological phases emanating from our one-dimensional system.Comment: 5 pages +, 3 figures, to appear in Physical Review
Probing Half-odd Topological Number with Cold Atoms in a Non-Abelian Optical Lattice
We propose an experimental scheme to probe the contribution of a single Dirac
cone to the Hall conductivity as half-odd topological number sequence. In our
scheme, the quantum anomalous Hall effect as in graphene is simulated with cold
atoms trapped in an optical lattice and subjected to a laser-induced
non-Abelian gauge field. By tuning the laser intensity to change the gauge
flux, the energies of the four Dirac points in the first Brillouin zone are
shifted with each other and the contribution of the single Dirac cone to the
total atomic Hall conductivity is manifested. We also show such manifestation
can be experimentally probed with atomic density profile measurements.Comment: 5 pages, 3 figure
Hierarchy of measurement-induced Fisher information for composite states
Quantum Fisher information, as an intrinsic quantity for quantum states, is a
central concept in quantum detection and estimation. When quantum measurements
are performed on quantum states, classical probability distributions arise,
which in turn lead to classical Fisher information. In this article, we exploit
the classical Fisher information induced by quantum measurements, and reveal a
rich hierarchical structure of such measurement-induced Fisher information. We
establish a general framework for the distribution and transfer of the Fisher
information. In particular, we illustrate three extremal distribution types of
the Fisher information: the locally owned type, the locally inaccessible type,
and the fully shared type. Furthermore, we indicate the significant role played
by the distribution and flow of the Fisher information in some physical
problems, e.g., the non-Markovianity of open quantum processes, the
environment-assisted metrology, the cloning and broadcasting, etc.Comment: 6 page
meson effects on neutron stars in the modified quark-meson coupling model
The properties of neutron stars are investigated by including meson
field in the Lagrangian density of modified quark-meson coupling model. The
population with meson is larger than that without
meson at the beginning, but it becomes smaller than that without meson
as the appearance of . The meson has opposite effects on
hadronic matter with or without hyperons: it softens the EOSes of hadronic
matter with hyperons, while it stiffens the EOSes of pure nucleonic matter.
Furthermore, the leptons and the hyperons have the similar influence on
meson effects. The meson increases the maximum masses of
neutron stars. The influence of on the meson effects
are also investigated.Comment: 10 pages, 6 figures, 4 table
- …