745 research outputs found
Anomalous Behavior of Ru for Catalytic Oxidation: A Theoretical Study of the Catalytic Reaction CO + 1/2 O_2 --> CO_2
Recent experiments revealed an anomalous dependence of carbon monoxide
oxidation at Ru(0001) on oxygen pressure and a particularly high reaction rate.
Below we report density functional theory calculations of the energetics and
reaction pathways of the speculated mechanism. We will show that the
exceptionally high rate is actuated by a weakly but nevertheless well bound
(1x1) oxygen adsorbate layer. Furthermore it is found that reactions via
scattering of gas-phase CO at the oxygen covered surface may play an important
role. Our analysis reveals, however, that reactions via adsorbed CO molecules
(the so-called Langmuir-Hinshelwood mechanism) dominate.Comment: 5 pages, 4 figures, Phys. Rev. Letters, Feb. 1997, in prin
The steady-state of heterogeneous catalysis, studied by first-principles statistical mechanics
The turn-over frequency of the catalytic oxidation of CO at RuO2(110) was
calculated as function of temperature and partial pressures using ab initio
statistical mechanics. The underlying energetics of the gas-phase molecules,
dissociation, adsorption, surface diffusion, surface chemical reactions, and
desorption were obtained by all-electron density-functional theory. The
resulting CO2 formation rate [in the full (T, p_CO, p_O2)-space], the movies
displaying the atomic motion and reactions over times scales from picoseconds
to seconds, and the statistical analyses provide insights into the concerted
actions ruling heterogeneous catalysis and open thermodynamic systems in
general.Comment: 4 pages including 3 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
First-principles, atomistic thermodynamics for oxidation catalysis
Present knowledge of the function of materials is largely based on studies
(experimental and theoretical) that are performed at low temperatures and
ultra-low pressures. However, the majority of everyday applications, like e.g.
catalysis, operate at atmospheric pressures and temperatures at or higher than
300 K. Here we employ ab initio, atomistic thermodynamics to construct a phase
diagram of surface structures in the (T,p)-space from ultra-high vacuum to
technically-relevant pressures and temperatures. We emphasize the value of such
phase diagrams as well as the importance of the reaction kinetics that may be
crucial e.g. close to phase boundaries.Comment: 4 pages including 2 figure files. Submitted to Phys. Rev. Lett.
Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Theoretical study of O adlayers on Ru(0001)
Recent experiments performed at high pressures indicate that ruthenium can
support unusually high concentrations of oxygen at the surface. To investigate
the structure and stability of high coverage oxygen structures, we performed
density functional theory calculations, within the generalized gradient
approximation, for O adlayers on Ru(0001) from low coverage up to a full
monolayer. We achieve quantitative agreement with previous low energy electron
diffraction intensity analyses for the (2x2) and (2x1) phases and predict that
an O adlayer with a (1x1) periodicity and coverage of 1 monolayer can form on
Ru(0001), where the O adatoms occupy hcp-hollow sites.Comment: RevTeX, 6 pages, 4 figure
Partial encapsulation of Pd particles by reduced ceria-zirconia
Direct observation of metal-oxide interfaces with atomic resolution can be achieved by cross-sectional high-resolution transmission electron microscopy (HRTEM). Using this approach to study the response of a model, single-crystal thin film automotive exhaust-gas catalyst, Pd particles supported on the (111) ceria-zirconia (CZO) surface, to a redox cycle, we have found two distinct processes for the partial encapsulation of the Pd particles by the reduced CZO surface that depend on their relative crystallographic orientations. In the case of the preferred orientation found for Pd particles on CZO, Pd(111)[110]//CZO(111)[110]Pd(111)[110]∕∕CZO(111)[110], a flat and sharp metal/oxide interface was maintained upon reduction, while ceria-zirconia from the adjacent surface tended to accumulate on and around the Pd particle. In rare cases, Pd particles with other orientations tended to sink into the oxide support upon reduction. Possible mechanisms for these encapsulation processes are proposed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87836/2/201915_1.pd
Surface Core Level Shifts of Clean and Oxygen Covered Ru(0001)
We have performed high resolution XPS experiments of the Ru(0001) surface,
both clean and covered with well-defined amounts of oxygen up to 1 ML coverage.
For the clean surface we detected two distinct components in the Ru 3d_{5/2}
core level spectra, for which a definite assignment was made using the high
resolution Angle-Scan Photoelectron Diffraction approach. For the p(2x2),
p(2x1), (2x2)-3O and (1x1)-O oxygen structures we found Ru 3d_{5/2} core level
peaks which are shifted up to 1 eV to higher binding energies. Very good
agreement with density functional theory calculations of these Surface Core
Level Shifts (SCLS) is reported. The overriding parameter for the resulting Ru
SCLSs turns out to be the number of directly coordinated O atoms. Since the
calculations permit the separation of initial and final state effects, our
results give valuable information for the understanding of bonding and
screening at the surface, otherwise not accessible in the measurement of the
core level energies alone.Comment: 16 pages including 10 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Composition, structure and stability of RuO_2(110) as a function of oxygen pressure
Using density-functional theory (DFT) we calculate the Gibbs free energy to
determine the lowest-energy structure of a RuO_2(110) surface in thermodynamic
equilibrium with an oxygen-rich environment. The traditionally assumed
stoichiometric termination is only found to be favorable at low oxygen chemical
potentials, i.e. low pressures and/or high temperatures. At realistic O
pressure, the surface is predicted to contain additional terminal O atoms.
Although this O excess defines a so-called polar surface, we show that the
prevalent ionic model, that dismisses such terminations on electrostatic
grounds, is of little validity for RuO_2(110). Together with analogous results
obtained previously at the (0001) surface of corundum-structured oxides, these
findings on (110) rutile indicate that the stability of non-stoichiometric
terminations is a more general phenomenon on transition metal oxide surfaces.Comment: 12 pages including 5 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Stability of sub-surface oxygen at Rh(111)
Using density-functional theory (DFT) we investigate the incorporation of
oxygen directly below the Rh(111) surface. We show that oxygen incorporation
will only commence after nearly completion of a dense O adlayer (\theta_tot =
1.0 monolayer) with O in the fcc on-surface sites. The experimentally suggested
octahedral sub-surface site occupancy, inducing a site-switch of the on-surface
species from fcc to hcp sites, is indeed found to be a rather low energy
structure. Our results indicate that at even higher coverages oxygen
incorporation is followed by oxygen agglomeration in two-dimensional
sub-surface islands directly below the first metal layer. Inside these islands,
the metastable hcp/octahedral (on-surface/sub-surface) site combination will
undergo a barrierless displacement, introducing a stacking fault of the first
metal layer with respect to the underlying substrate and leading to a stable
fcc/tetrahedral site occupation. We suggest that these elementary steps,
namely, oxygen incorporation, aggregation into sub-surface islands and
destabilization of the metal surface may be more general and precede the
formation of a surface oxide at close-packed late transition metal surfaces.Comment: 9 pages including 9 figure files. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD
Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion
The McKenna Rule and U.K. World War I Finance
The United Kingdom employed the McKenna rule to conduct fiscal policy during World War I (WWI) and the interwar period. Named for Reginald McKenna, Chancellor of the Exchequer (1915–16), the McKenna rule committed the United Kingdom to a path of debt retirement, which we show was forward-looking and smoothed in response to shocks to the real economy and tax rates. The McKenna rule was in the tradition of the English method of war finance because the United Kingdom taxed capital to finance WWI. Higher rates of capital taxation also paid for debt retirement during and subsequent to WWI. The United Kingdom was motivated to implement the McKenna rule because of a desire to achieve a balance between fairness and equity. However, the McKenna rule adversely affected the real economy, according to a permanent income model. WWI and interwar U.K. data support the prediction that real activity is lower in response to higher past debt retirement rates
- …