2,906 research outputs found

    Cardiac Modelling Techniques to Predict Future Heart Function and New Biomarkers in Acute Myocardial Infarction

    Get PDF
    Fundamental to treatment planning for patients that have suffered myocardial infarction are predictive biomarkers and risk factors. Important among these in terms of a patient’s treatment plan or prognosis are the contractility of the damaged myofibers, final infarct volume, and poor infarct healing rate. Proposed and developed in this thesis are techniques to predict these biomarkers and risk factors using cardiac biomechanical modelling. One of the developed techniques was a CT compatible shape optimization technique which can predict the contraction force of healthy, and stunned myofibers within 6.3% and the distribution of potentially necrotic myofibers within 10% accuracy. The second study involved development of infarct healing network proposed to reduce the complexity of modeling hearts with myocardial infarction while also staging the healing rate and measure collagen concentration in the infarct region reasonably accurately. Finally, an evaluation of how best to measure cardiac output by indicator dilution theory was executed

    Microscopic description of the surface dipole plasmon in large Na_N clusters (950 < N < 12050)

    Full text link
    Fully microscopic RPA/LDA calculations of the dipole plasmon for very large neutral and charged sodium clusters, Na_N^Z+, in the size range 950 < N < 12050 are presented for the first time. 60 different sizes are considered altogether, which allows for an in-depth investigation of the asymptotic behavior of both the width and the position of the plasmon.Comment: Latex/Revtex, 4 pages with 4 Postscript figures, accepted for publication in Physical Review

    Apparent oxygen utilization rates calculated from tritium and helium-3 profiles at the Bermuda Atlantic Time-series Study site

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 9 (2012): 1969-1983, doi:10.5194/bg-9-1969-2012.We present three years of Apparent Oxygen Utilization Rates (AOUR) estimated from oxygen and tracer data collected over the ocean thermocline at monthly resolution between 2003 and 2006 at the Bermuda Atlantic Time-series Study (BATS) site. We estimate water ages by calculating a transit time distribution from tritium and helium-3 data. The vertically integrated AOUR over the upper 500 m, which is a regional estimate of export, during the three years is 3.1 ± 0.5 mol O2 m−2 yr−1. This is comparable to previous AOUR-based estimates of export production at the BATS site but is several times larger than export estimates derived from sediment traps or 234Th fluxes. We compare AOUR determined in this study to AOUR measured in the 1980s and show AOUR is significantly greater today than decades earlier because of changes in AOU, rather than changes in ventilation rates. The changes in AOU are likely a methodological artefact associated with problems with early oxygen measurements.Support from this work came from the National Science Foundation (OCE-0221247, OCE-0623034, and OCE-1029676) and from the WHOI Penzance Endowed Fund in Support of Assistant Scientists

    Anomalous Exponent of the Spin Correlation Function of a Quantum Hall Edge

    Full text link
    The charge and spin correlation functions of partially spin-polarized edge electrons of a quantum Hall bar are studied using effective Hamiltonian and bosonization techniques. In the presence of the Coulomb interaction between the edges with opposite chirality we find a different crossover behavior in spin and charge correlation functions. The crossover of the spin correlation function in the Coulomb dominated regime is characterized by an anomalous exponent, which originates from the finite value of the effective interaction for the spin degree of freedom in the long wavelength limit. The anomalous exponent may be determined by measuring nuclear spin relaxation rates in a narrow quantum Hall bar or in a quantum wire in strong magnetic fields.Comment: 4 pages, Revtex file, no figures. To appear in Physical Revews B, Rapid communication

    Charge and current oscillations in Fractional quantum Hall systems with edges

    Full text link
    Stationary solutions of the Chern-Simons effective field theory for the fractional quantum Hall systems with edges are presented for Hall bar, disk and annulus. In the infinitely long Hall bar geometry (non compact case), the charge density is shown to be monotonic inside the sample. In sharp contrast, spatial oscillatory modes of charge density are found for the two circular geometries, which indicate that in systems with compact geometry, charge and current exist also far from the edges.Comment: 16 pages, 6 figures Revte

    Anomalous tunneling conductances of a spin singlet \nu=2/3 edge states: Interplay of Zeeman splitting and Long Range Coulomb Interaction

    Full text link
    The point contact tunneling conductance between edges of the spin singlet ν=2/3,K^=(3/3/0)\nu=2/3,\hat{K}=(3/3/0) quantum Hall states is studied both in the quasiparticle tunneling picture and in the electron tunneling picture. Due to the interplay of Zeeman splitting and the long range Coulomb interaction between edges of opposite chirality novel spin excitations emerge, and their effect is characterized by anomalous exponents of the charge and spin tunneling conductances in various temperature ranges. Depending on the kinds of scatterings at the point contact and the tunneling mechanism the anomalous interaction in spin sector may enhance or suppress the tunneling conductances. The effects of novel spin excitation are also relevant to the recent NMR experiments on quantum Hall edges.Comment: Revtex File, 7 pages: To be published in Physical Reviews

    Effect of isospin dependent cross-section on fragment production in the collision of charge asymmetric nuclei

    Full text link
    To understand the role of isospin effects on fragmentation due to the collisions of charge asymmetric nuclei, we have performed a complete systematical study using isospin dependent quantum molecular dynamics model. Here simulations have been carried out for 124Xn+124Xn^{124}X_{n}+ ^{124}X_{n}, where n varies from 47 to 59 and for 40Ym+40Ym^{40}Y_{m}+ ^{40}Y_{m}, where m varies from 14 to 23. Our study shows that isospin dependent cross-section shows its influence on fragmentation in the collision of neutron rich nuclei

    Sharp and Smooth Boundaries of Quantum Hall Liquids

    Full text link
    We study the transition between sharp and smooth density distributions at the edges of Quantum Hall Liquids in the presence of interactions. We find that, for strong confining potentials, the edge of a ν=1\nu=1 liquid is described by the ZF=1Z_F=1 Fermi Liquid theory, even in the presence of interactions, a consequence of the chiral nature of the system. When the edge confining potential is decreased beyond a point, the edge undergoes a reconstruction and electrons start to deposit a distance ∼2\sim 2 magnetic lengths away from the initial QH Liquid. Within the Hartree-Fock approximation, a new pair of branches of gapless edge excitations is generated after the transition. We show that the transition is controlled by the balance between a long-ranged repulsive Hartree term and a short-ranged attractive exchange term. Such transition also occurs for Quantum Dots in the Quantum Hall Regime, and should be observable in resonant tunneling experiments. Electron tunneling into the reconstructed edge is also discussed.Comment: 28 pages, REVTeX 3.0, 18 figures available upon request, cond-mat/yymmnn

    Supercurrent through a single transverse mode in nanowire Josephson junctions

    Full text link
    Hybrid superconductor-semiconductor materials are fueling research in mesoscopic physics and quantum technology. Recently demonstrated smooth β\beta-Sn superconductor shells, due to the increased induced gap, are expanding the available parameter space to new regimes. Fabricated on quasiballistic InSb nanowires, with careful control over the hybrid interface, Sn shells yield critical current-normal resistance products exceeding temperature by at least an order of magnitude even when nanowire resistance is of order 10kΩ\Omega. In this regime Cooper pairs travel through a purely 1D quantum wire for at least part of their trajectory. Here, we focus on the evolution of supercurrent in magnetic field parallel to the nanowire. Long decay up to fields of 1T is observed. At the same time, the decay for higher occupied subbands is notably faster in some devices but not in others. We analyze this using a tight-binding numerical model that includes the Zeeman, orbital and spin-orbit effects. When the first subband is spin polarized, we observe a dramatic suppression of supercurrent, which is also confirmed by the model and suggests an absence of significant triplet supercurrent generation
    • …
    corecore