10,785 research outputs found

    Tunneling of a Quantized Vortex: Roles of Pinning and Dissipation

    Full text link
    We have performed a theoretical study of the effects of pinning potential and dissipation on vortex tunneling in superconductors. Analytical results are obtained in various limits relevant to experiment. In general we have found that pinning and dissipation tend to suppress the effect of the vortex velocity dependent part of the Magnus force on vortex tunneling.Comment: Latex, 12 page

    Nonequilibrium Approach to Bloch-Peierls-Berry Dynamics

    Get PDF
    We examine the Bloch-Peierls-Berry dynamics under a classical nonequilibrium dynamical formulation. In this formulation all coordinates in phase space formed by the position and crystal momentum space are treated on equal footing. Explicitly demonstrations of the no (naive) Liouville theorem and of the validity of Darboux theorem are given. The explicit equilibrium distribution function is obtained. The similarities and differences to previous approaches are discussed. Our results confirm the richness of the Bloch-Peierls-Berry dynamics

    Stochastic Physics, Complex Systems and Biology

    Full text link
    In complex systems, the interplay between nonlinear and stochastic dynamics, e.g., J. Monod's necessity and chance, gives rise to an evolutionary process in Darwinian sense, in terms of discrete jumps among attractors, with punctuated equilibrium, spontaneous random "mutations" and "adaptations". On an evlutionary time scale it produces sustainable diversity among individuals in a homogeneous population rather than convergence as usually predicted by a deterministic dynamics. The emergent discrete states in such a system, i.e., attractors, have natural robustness against both internal and external perturbations. Phenotypic states of a biological cell, a mesoscopic nonlinear stochastic open biochemical system, could be understood through such a perspective.Comment: 10 page

    Rotation of electromagnetic fields and the nature of optical angular momentum

    Get PDF
    The association of spin and orbital angular momenta of light with its polarization and helical phase fronts is now well established. The problems in linking this with electromagnetic theory, as expressed in Maxwell's equations, are rather less well known. We present a simple analysis of the problems involved in defining spin and orbital angular momenta for electromagnetic fields and discuss some of the remaining challenges. Crucial to our investigation is the duplex symmetry between the electric and magnetic fields

    Spin domain formation in spinor Bose-Einstein condensation

    Full text link
    The spatial structure of the spinor Bose-Einstein condensates with the spin degrees of freedom is analyzed based on the generalized Gross-Pitaevskii equation (GP) in the light of the present spin domain experiment on m_F=\pm 1, and 0 of the hyperfine state F=1 of ^{23}Na atom gases. The GP solutions in three- and one-spatial dimensional cases reproduce the observed spin domain structures, revealing the length scale associated with the existence of the weak interaction of the spin-spin channel, other than the ordinary coherence length related to the density-density channel. The obtained domain structure in GP is compared with the result in Thomas-Fermi approximation. The former solution is found to better describe the observed features than the latter.Comment: 9 pages, 14 figure

    On carbon and oxygen isotope ratios in starburst galaxies: New data from NGC253 and Mrk231 and their implications

    Get PDF
    Using the IRAM 30-m telescope, CN and CO isotopologues have been measured toward the central regions of the nearby starburst galaxy NGC253 and the prototypical ultraluminous infrared galaxy Mrk231. In NGC253, the 12C/13C ratio is 40+-10. Assuming that the ratio also holds for the CO emitting gas, this yields 16O/18O = 145+-36 and 16O/17O = 1290+-365 and a 32S/34S ratio close to that measured for the local interstellar medium (20-25). No indication for vibrationally excited CN is found. Peak line intensity ratios between NGC253 and Mrk231 are ~100 for 12C16O and 12C18O J=1-0, while the ratio for 13C16O J=1-0 is ~250. This and similar 13CO and C18O line intensities in the J=1-0 and 2-1 transitions of Mrk231 suggest 12C/13C ~ 100 and 16O/18O ~ 100, in agreement with values obtained for the less evolved ultraluminous merger Arp220. Also accounting for other extragalactic data, 12C/13C ratios appear to vary over a full order of magnitude, from >100 in ultraluminous high redshift galaxies to ~100 in more local such galaxies to ~40 in weaker starbursts not undergoing a large scale merger to 25 in the Central Molecular Zone of the Milky Way. With 12C being predominantly synthesized in massive stars, while 13C is mostly ejected by longer lived lower mass stars at later times, this is qualitatively consistent with our results of decreasing carbon isotope ratios with time and rising metallicity. It is emphasized, however, that both infall of poorly processed material, initiating a nuclear starburst, as well as the ejecta from newly formed massive stars (in particular in case of a top-heavy stellar initial mass function) can raise the carbon isotope ratio for a limited amount of time.Comment: Accepted by Astronomy & Astrophysics, 6 figures, 4 table

    Zero-temperature phase diagram of binary boson-fermion mixtures

    Full text link
    We calculate the phase diagram for dilute mixtures of bosons and fermions at zero temperature. The linear stability conditions are derived and related to the effective boson-induced interaction between the fermions. We show that in equilibrium there are three possibilities: a) a single uniform phase, b) a purely fermionic phase coexisting with a purely bosonic one and c) a purely fermionic phase coexisting with a mixed phase.Comment: 8 pages, revtex, 3 postscript figures; NORDITA-1999/71 C

    Heat flux operator, current conservation and the formal Fourier's law

    Full text link
    By revisiting previous definitions of the heat current operator, we show that one can define a heat current operator that satisfies the continuity equation for a general Hamiltonian in one dimension. This expression is useful for studying electronic, phononic and photonic energy flow in linear systems and in hybrid structures. The definition allows us to deduce the necessary conditions that result in current conservation for general-statistics systems. The discrete form of the Fourier's Law of heat conduction naturally emerges in the present definition
    • …
    corecore