148 research outputs found

    Unified description of bulk and interface-enhanced spin pumping

    Get PDF
    The dynamics of non-equilibrium spin accumulation generated in metals or semiconductors by rf magnetic field pumping is treated within a diffusive picture. The dc spin accumulation produced in a uniform system by a rotating applied magnetic field or by a precessing magnetization of a weak ferromagnet is in general given by a (small) fraction of hbar omega, where omega is the rotation or precession frequency. With the addition of a neighboring, field-free region and allowing for the diffusion of spins, the spin accumulation is dramatically enhanced at the interface, saturating at the universal value hbar omega in the limit of long spin relaxation time. This effect can be maximized when the system dimensions are of the order of sqrt(2pi D omega), where D is the diffusion constant. We compare our results to the interface spin pumping theory of A. Brataas et al. [Phys. Rev. B 66, 060404(R) (2002)]

    Microwave spectroscopy on magnetization reversal dynamics of nanomagnets with electronic detection

    Get PDF
    We demonstrate a detection method for microwave spectroscopy on magnetization reversal dynamics of nanomagnets. Measurement of the nanomagnet anisotropic magnetoresistance was used for probing how magnetization reversal is resonantly enhanced by microwave magnetic fields. We used Co strips of 2 um x 130 nm x 40 nm, and microwave fields were applied via an on-chip coplanar wave guide. The method was applied for demonstrating single domain-wall resonance, and studying the role of resonant domain-wall dynamics in magnetization reversal

    Coupling efficiency for phase locking of a spin transfer oscillator to a microwave current

    Full text link
    The phase locking behavior of spin transfer nano-oscillators (STNOs) to an external microwave signal is experimentally studied as a function of the STNO intrinsic parameters. We extract the coupling strength from our data using the derived phase dynamics of a forced STNO. The predicted trends on the coupling strength for phase locking as a function of intrinsic features of the oscillators i.e. power, linewidth, agility in current, are central to optimize the emitted power in arrays of mutually coupled STNOs

    Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque

    Full text link
    We investigate the dynamics of two coupled vortices driven by spin transfer. We are able to independently control with current and perpendicular field, and to detect, the respective chiralities and polarities of the two vortices. For current densities above J=5.7∗107A/cm2J=5.7*10^7 A/cm^2, a highly coherent signal (linewidth down to 46 kHz) can be observed, with a strong dependence on the relative polarities of the vortices. It demonstrates the interest of using coupled dynamics in order to increase the coherence of the microwave signal. Emissions exhibit a linear frequency evolution with perpendicular field, with coherence conserved even at zero magnetic field

    Domain wall displacement by remote spin-current injection

    Get PDF
    We demonstrate numerically the ability to displace a magnetic domain wall by a remote spin current injection. We consider a long and narrow magnetic nanostripe with a single domain wall (DW). The spin-polarized current is injected perpendicularly to the plane of the film (CPP) through a small nanocontact which is located at certain distance from the domain wall initial position. We show theoretically that the DW motion can be initiated not only by conventional spin-transfer torque but also by indirect spin-torque, created by a remote spin-current injection and then transferred to the DW by the exchange-spring mechanism. An analytical description of this effect is proposed. This finding may lead to a solution of bottleneck problems of DW motion-based spintronic and neuromorphic devices with perpendicular spin-current injection.Comment: 6 pages, 4 figure

    Parallel pumping of magnetic vortex gyrations in spin-torque nano-oscillators

    Full text link
    We experimentally demonstrate that large magnetic vortex oscillations can be parametrically excited in a magnetic tunnel junction by the injection of radio-frequency (rf) currents at twice the natural frequency of the gyrotropic vortex core motion. The mechanism of excitation is based on the parallel pumping of vortex motion by the rf orthoradial field generated by the injected current. Theoretical analysis shows that experimental results can be interpreted as the manifestation of parametric amplification when rf current is small, and of parametric instability when rf current is above a certain threshold. By taking into account the energy nonlinearities, we succeed to describe the amplitude saturation of vortex oscillations as well as the coexistence of stable regimes.Comment: Submitted to Phys. Rev. Let

    Field dependence of magnetization reversal by spin transfer

    Full text link
    We analyse the effect of the applied field (Happl) on the current-driven magnetization reversal in pillar-shaped Co/Cu/Co trilayers, where we observe two different types of transition between the parallel (P) and antiparallel (AP) magnetic configurations of the Co layers. If Happl is weaker than a rather small threshold value, the transitions between P and AP are irreversible and relatively sharp. For Happl exceding the threshold value, the same transitions are progressive and reversible. We show that the criteria for the stability of the P and AP states and the experimentally observed behavior can be precisely accounted for by introducing the current-induced torque of the spin transfer models in a Landau-Lifschitz-Gilbert equation. This approach also provides a good description for the field dependence of the critical currents

    Microwave Oscillations of a Nanomagnet Driven by a Spin-Polarized Current

    Full text link
    We describe direct electrical measurements of microwave-frequency dynamics in individual nanomagnets that are driven by spin transfer from a DC spin-polarized current. We map out the dynamical stability diagram as a function of current and magnetic field, and we show that spin transfer can produce several different types of magnetic excitations, including small-angle precession, a more complicated large-angle motion, and a high-current state that generates little microwave signal. The large-angle mode can produce a significant emission of microwave energy, as large as 40 times the Johnson-noise background.Comment: 12 pages, 3 figure

    Mechanisms of spin-polarized current-driven magnetization switching

    Full text link
    The mechanisms of the magnetization switching of magnetic multilayers driven by a current are studied by including exchange interaction between local moments and spin accumulation of conduction electrons. It is found that this exchange interaction leads to two additional terms in the Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both terms are proportional to the transverse spin accumulation and have comparable magnitudes
    • …
    corecore