1,046 research outputs found

    Large-N limit of a magnetic impurity in unconventional density waves

    Full text link
    We investigate the effect of unconventional density wave (UDW) condensate on an Anderson impurity using large-N technique at T=0. In accordance with previous treatments of a Kondo impurity in pseudogap phases, we find that Kondo effect occurs only in a certain range of parameters. The f-electron density of states reflects the influence of UDW at low energies and around the maximum of the density wave gap. The static spin susceptibility diverges at the critical coupling, indicating the transition from strong to weak coupling. In the dynamic spin susceptibility an additional peak appears showing the presence the UDW gap. Predictions concerning non-linear density of states are made. Our results apply to other unconventional condensates such as d-wave superconductors and d-density waves as well.Comment: 9 pages, 7 figure

    Ground State Properties of Anderson Impurity in a Gapless Host

    Full text link
    Using the Bethe ansatz method, we study the ground state properties of a UU\to\infty Anderson impurity in a ``gapless'' host, where a density of band states vanishes at the Fermi level ϵF\epsilon_F as ϵϵF|\epsilon-\epsilon_F|. As in metals, the impurity spin is proven to be screened at arbitrary parameters of the system. However, the impurity occupancy as a function of the bare impurity energy is shown to acquire novel qualitative features which demonstrate a nonuniversal behavior of the system. The latter explains why the Kondo screening is absent (or exists only at quite a large electron-impurity coupling) in earlier studies based on scaling arguments.Comment: 5 pages, no figure, RevTe

    Anderson impurity in pseudo-gap Fermi systems

    Full text link
    We use the numerical renormalization group method to study an Anderson impurity in a conduction band with the density of states varying as rho(omega) \propto |omega|^r with r>0. We find two different fixed points: a local-moment fixed point with the impurity effectively decoupled from the band and a strong-coupling fixed point with a partially screened impurity spin. The specific heat and the spin-susceptibility show powerlaw behaviour with different exponents in strong-coupling and local-moment regime. We also calculate the impurity spectral function which diverges (vanishes) with |omega|^{-r} (|\omega|^r) in the strong-coupling (local moment) regime.Comment: 8 pages, LaTeX, 4 figures includes as eps-file

    Nonvanishing Local Moment in Triplet Superconductors

    Full text link
    The Kondo effect in a px+ipyp_x + {\rm i} p_y-wave superconductor is studied by applying the Wilson's numerical renormalization group method. In this type of superconductor with a full energy gap like a s-wave one, the ground state is always a spin doublet, while a local spin is shrunk by the Kondo effect. The calculated magnetic susceptibility indicates that the spin of the ground state is generated by the orbital effect of the px+ipyp_x + {\rm i} p_y-wave Cooper pairs. The effect of spin polarization of the triplet superconductor is also discussed.Comment: 5 pages, 4 figures, to be published in J. Phys. Soc. Jp

    Local quantum phase transition in the pseudogap Anderson model: scales, scaling and quantum critical dynamics

    Full text link
    The pseudogap Anderson impurity model provides a paradigm for understanding local quantum phase transitions, in this case between generalised fermi liquid and degenerate local moment phases. Here we develop a non-perturbative local moment approach to the generic asymmetric model, encompassing all energy scales and interaction strengths and leading thereby to a rich description of the problem. We investigate in particular underlying phase boundaries, the critical behaviour of relevant low-energy scales, and single-particle dynamics embodied in the local spectrum. Particular attention is given to the resultant universal scaling behaviour of dynamics close to the transition in both the GFL and LM phases, the scale-free physics characteristic of the quantum critical point itself, and the relation between the two.Comment: 39 pages, 19 figure

    Multichannel pseudogap Kondo model: Large-N solution and quantum-critical dynamics

    Full text link
    We discuss a multichannel SU(N) Kondo model which displays non-trivial zero-temperature phase transitions due to a conduction electron density of states vanishing with a power law at the Fermi level. In a particular large-N limit, the system is described by coupled integral equations corresponding to a dynamic saddle point. We exactly determine the universal low-energy behavior of spectral densities at the scale-invariant fixed points, obtain anomalous exponents, and compute scaling functions describing the crossover near the quantum-critical points. We argue that our findings are relevant to recent experiments on impurity-doped d-wave superconductors.Comment: 4 pages, 3 figs; extended discussion of large-N spin representations, added references; accepted for publication in PR

    A Local Moment Approach to magnetic impurities in gapless Fermi systems

    Full text link
    A local moment approach is developed for the single-particle excitations of a symmetric Anderson impurity model (AIM), with a soft-gap hybridization vanishing at the Fermi level with a power law r > 0. Local moments are introduced explicitly from the outset, and a two-self-energy description is employed in which the single-particle excitations are coupled dynamically to low-energy transverse spin fluctuations. The resultant theory is applicable on all energy scales, and captures both the spin-fluctuation regime of strong coupling (large-U), as well as the weak coupling regime. While the primary emphasis is on single particle dynamics, the quantum phase transition between strong coupling (SC) and (LM) phases can also be addressed directly; for the spin-fluctuation regime in particular a number of asymptotically exact results are thereby obtained. Results for both single-particle spectra and SC/LM phase boundaries are found to agree well with recent numerical renormalization group (NRG) studies. A number of further testable predictions are made; in particular, for r < 1/2, spectra characteristic of the SC state are predicted to exhibit an r-dependent universal scaling form as the SC/LM phase boundary is approached and the Kondo scale vanishes. Results for the `normal' r = 0 AIM are moreover recovered smoothly from the limit r -> 0, where the resultant description of single-particle dynamics includes recovery of Doniach-Sunjic tails in the Kondo resonance, as well as characteristic low-energy Fermi liquid behaviour.Comment: 52 pages, 19 figures, submitted to Journal of Physics: Condensed Matte

    Anderson impurities in gapless hosts: comparison of renormalization group and local moment approaches

    Full text link
    The symmetric Anderson impurity model, with a soft-gap hybridization vanishing at the Fermi level with power law r > 0, is studied via the numerical renormalization group (NRG). Detailed comparison is made with predictions arising from the local moment approach (LMA), a recently developed many-body theory which is found to provide a remarkably successful description of the problem. Results for the `normal' (r = 0) impurity model are obtained as a specific case. Particular emphasis is given both to single-particle excitation dynamics, and to the transition between the strong coupling (SC) and local moment (LM) phases of the model. Scaling characteristics and asymptotic behaviour of the SC/LM phase boundaries are considered. Single-particle spectra are investigated in some detail, for the SC phase in particular. Here, the modified spectral functions are found to contain a generalized Kondo resonance that is ubiquitously pinned at the Fermi level; and which exhibits a characteristic low-energy Kondo scale that narrows progressively upon approach to the SC->LM transition, where it vanishes. Universal scaling of the spectra as the transition is approached thus results. The scaling spectrum characteristic of the normal Anderson model is recovered as a particular case, and is captured quantitatively by the LMA. In all cases the r-dependent scaling spectra are found to possess characteristic low-energy asymptotics, but to be dominated by generalized Doniach-Sunjic tails, in agreement with LMA predictions.Comment: 26 pages, 14 figures, submitted for publicatio

    Renormalization-group study of Anderson and Kondo impurities in gapless Fermi systems

    Full text link
    Thermodynamic properties are presented for four magnetic impurity models describing delocalized fermions scattering from a localized orbital at an energy-dependent rate Γ(ϵ)\Gamma(\epsilon) which vanishes precisely at the Fermi level, ϵ=0\epsilon = 0. Specifically, it is assumed that for small ϵ|\epsilon|, Γ(ϵ)ϵr\Gamma(\epsilon)\propto|\epsilon|^r with r>0r>0. The cases r=1r=1 and r=2r=2 describe dilute magnetic impurities in unconventional superconductors, ``flux phases'' of the two-dimensional electron gas, and zero-gap semiconductors. For the nondegenerate Anderson model, the depression of the low-energy scattering rate suppresses mixed valence in favor of local-moment behavior, and leads to a marked reduction in the exchange coupling on entry to the local-moment regime, with a consequent narrowing of the range of parameters within which the impurity spin becomes Kondo-screened. The relationship between the Anderson model and the exactly screened Kondo model with power-law exchange is examined. The intermediate-coupling fixed point identified in the latter model by Withoff and Fradkin (WF) has clear signatures in the thermodynamic properties and in the local magnetic response of the impurity. The underscreened, impurity-spin-one Kondo model and the overscreened, two-channel Kondo model both exhibit a conditionally stable intermediate-coupling fixed point in addition to unstable fixed points of the WF type. In all four models, the presence or absence of particle-hole symmetry plays a crucial role.Comment: 44 two-column REVTex pages, 31 epsf-embedded EPS figures. MINOR formatting changes. To appear in Phys. Rev.

    Kondo effect in a quantum critical ferromagnet

    Full text link
    We study the Heisenberg ferromagnetic spin chain coupled with a boundary impurity. Via Bethe ansatz solution, it is found that (i) for J>0, the impurity spin behaves as a diamagnetic center and is completely screened by 2S bulk spins in the ground state, no matter how large the impurity spin is; (ii) The specific heat of the local composite (impurity plus 2S bulk spins which form bound state with it) shows a simple power law ClocT3/2C_{loc}\sim T^{3/2}. (iii)For J<0, the impurity is locked into the critical behavior of the bulk. Possible phenomena in higher dimensions are discussed.Comment: 6page Revtex, no figure, final version in PRB, Jun 1 issue, 199
    corecore