10 research outputs found

    Geometrical validity of curvilinear finite elements

    Full text link
    In this paper, we describe a way to compute accurate bounds on Jacobian determinants of curvilinear polynomial finite elements. Our condition enables to guarantee that an element is geometrically valid, i.e., that its Jacobian determinant is strictly positive everywhere in its reference domain. It also provides an efficient way to measure the distortion of curvilinear elements. The key feature of the method is to expand the Jacobian determinant using a polynomial basis, built using Bézier functions, that has both properties of boundedness and positivity. Numerical results show the sharpness of our estimates

    Geometrical validity of high-order triangular finite elements

    Full text link
    This paper presents a method to compute accurate bounds on Jacobian determinants of high-order (curvilinear) triangular finite elements. This method can be used to guarantee that a curvilinear triangle is geometrically valid, i.e., that its Jacobian determinant is strictly positive everywhere in its reference domain. It also provides an efficient way to measure the quality the triangles. The key feature of the method is to expand the Jacobian determinant using a polynomial basis, built using Bézier functions, that has both properties of boundedness and positivity. Numerical results show the sharpness of our estimates

    Computing cross fields A PDE approach based on the Ginzburg-Landau theory

    No full text
    peer reviewedCross fields are auxiliary in the generation of quadrangular meshes. A method to generate cross fields on surface manifolds is presented in this paper. Algebraic topology constraints on quadrangular meshes are first discussed. The duality between quadrangular meshes and cross fields is then outlined, and a generalization to cross fields of the Poincaré-Hopf theorem is proposed, which highlights some fundamental and important topological constraints on cross fields. A finite element formulation for the computation of cross fields is then presented, which is based on Ginzburg-Landau equations and makes use of edge-based Crouzeix-Raviart interpolation functions. It is first presented in the planar case, and then extended to a general surface manifold. Finally, application examples are solved and discussed. © 2017 The Authors. Published by Elsevier Ltd

    Multiscale mesh generation on the sphere

    Full text link
    A method for generating computational meshes for applications in ocean modeling is presented. The method uses a standard engineering approach for describing the geometry of the domain that requires meshing. The underlying sphere is parametrized using stereographic coordinates. Then, coastlines are described with cubic splines drawn in the stereographic parametric space. The mesh generation algorithm builds the mesh in the parametric plane using available techniques. The method enables to import coastlines from different data sets and, consequently, to build meshes of domains with highly variable length scales. The results include meshes together with numerical simulations of various kinds
    corecore