327 research outputs found

    Enumerative geometry of Calabi-Yau 4-folds

    Full text link
    Gromov-Witten theory is used to define an enumerative geometry of curves in Calabi-Yau 4-folds. The main technique is to find exact solutions to moving multiple cover integrals. The resulting invariants are analogous to the BPS counts of Gopakumar and Vafa for Calabi-Yau 3-folds. We conjecture the 4-fold invariants to be integers and expect a sheaf theoretic explanation. Several local Calabi-Yau 4-folds are solved exactly. Compact cases, including the sextic Calabi-Yau in CP5, are also studied. A complete solution of the Gromov-Witten theory of the sextic is conjecturally obtained by the holomorphic anomaly equation.Comment: 44 page

    On field theory quantization around instantons

    Full text link
    With the perspective of looking for experimentally detectable physical applications of the so-called topological embedding, a procedure recently proposed by the author for quantizing a field theory around a non-discrete space of classical minima (instantons, for example), the physical implications are discussed in a ``theoretical'' framework, the ideas are collected in a simple logical scheme and the topological version of the Ginzburg-Landau theory of superconductivity is solved in the intermediate situation between type I and type II superconductors.Comment: 27 pages, 5 figures, LaTe

    Precise Determination of Electroweak Parameters in Neutrino-Nucleon Scattering

    Full text link
    A systematic error in the extraction of sin⁥2ΞW\sin^2 \theta_W from nuclear deep inelastic scattering of neutrinos and antineutrinos arises from higher-twist effects arising from nuclear shadowing. We explain that these effects cause a correction to the results of the recently reported significant deviation from the Standard Model that is potentially as large as the deviation claimed, and of a sign that cannot be determined without an extremely careful study of the data set used to model the input parton distribution functions.Comment: 3pages, 0 figures, version to be published by IJMP

    Conservation Laws in a First Order Dynamical System of Vortices

    Full text link
    Gauge invariant conservation laws for the linear and angular momenta are studied in a certain 2+1 dimensional first order dynamical model of vortices in superconductivity. In analogy with fluid vortices it is possible to express the linear and angular momenta as low moments of vorticity. The conservation laws are compared with those obtained in the moduli space approximation for vortex dynamics.Comment: LaTex file, 16 page

    Instantons and Monopoles in General Abelian Gauges

    Get PDF
    A relation between the total instanton number and the quantum-numbers of magnetic monopoles that arise in general Abelian gauges in SU(2) Yang-Mills theory is established. The instanton number is expressed as the sum of the `twists' of all monopoles, where the twist is related to a generalized Hopf invariant. The origin of a stronger relation between instantons and monopoles in the Polyakov gauge is discussed.Comment: 28 pages, 8 figures; comments added to put work into proper contex

    A Monopole-Antimonopole Solution of the SU(2) Yang-Mills-Higgs Model

    Get PDF
    As shown by Taubes, in the Bogomol'nyi-Prasad-Sommerfield limit the SU(2) Yang-Mills-Higgs model possesses smooth finite energy solutions, which do not satisfy the first order Bogomol'nyi equations. We construct numerically such a non-Bogomol'nyi solution, corresponding to a monopole-antimonopole pair, and extend the construction to finite Higgs potential.Comment: 11 pages, including 4 eps figures, LaTex format using RevTe

    Exact N-vortex solutions to the Ginzburg-Landau equations for kappa=1/sqrt(2)

    Full text link
    The N-vortex solutions to the two-dimensional Ginzburg - Landau equations for the kappa=1/\sqrt(2) parameter are built. The exact solutions are derived for the vortices with large numbers of the magnetic flux quanta. The size of vortex core is supposed to be much greater than the magnetic field penetration depth. In this limiting case the problem is reduced to the determination of vortex core shape. The corresponding nonlinear boundary problem is solved by means of the methods of the theory of analytic functions.Comment: 12 pages in RevTex, 1 Postscript figur

    Vortices in Ginzburg-Landau billiards

    Full text link
    We present an analysis of the Ginzburg-Landau equations for the description of a two-dimensional superconductor in a bounded domain. Using the properties of a special integrability point of these equations which allows vortex solutions, we obtain a closed expression for the energy of the superconductor. The role of the boundary of the system is to provide a selection mechanism for the number of vortices. A geometrical interpretation of these results is presented and they are applied to the analysis of the magnetization recently measured on small superconducting disks. Problems related to the interaction and nucleation of vortices are discussed.Comment: RevTex, 17 pages, 3 eps figure

    Decomposition of meron configuration of SU(2) gauge field

    Full text link
    For the meron configuration of the SU(2) gauge field in the four dimensional Minkowskii spacetime, the decomposition into an isovector field \bn, isoscalar fields ρ\rho and σ\sigma, and a U(1) gauge field CÎŒC_{\mu} is attained by solving the consistency condition for \bn. The resulting \bn turns out to possess two singular points, behave like a monopole-antimonopole pair and reduce to the conventional hedgehog in a special case. The CÎŒC_{\mu} field also possesses singular points, while ρ\rho and σ\sigma are regular everywhere.Comment: 18 pages, 5 figures, Sec.4 rewritten. 5 refs. adde

    Monopoles, Antimonopoles and Vortex Rings

    Full text link
    We present a new class of static axially symmetric solutions of SU(2) Yang-Mills-Higgs theory, where the Higgs field vanishes on rings centered around the symmetry axis. Associating a magnetic dipole moment with each Higgs vortex ring, the dipole moments add for solutions in the trivial topological sector, whereas they cancel for magnetically charged solutions.Comment: 4 pages, 1 figur
    • 

    corecore