8,504 research outputs found
How do liquids confined at the nanoscale influence adhesion?
Liquids play an important role in adhesion and sliding friction. They behave
as lubricants in human bodies especially in the joints. However, in many
biological attachment systems they acts like adhesives, e.g. facilitating
insects to move on ceilings or vertical walls. Here we use molecular dynamics
to study how liquids confined at the nanoscale influence the adhesion between
solid bodies with smooth and rough surfaces. We show that a monolayer of liquid
may strongly affect the adhesion.Comment: 5 pages, 9 color figures. Some figures are in Postscript Level 3
format. Minimal changes with respect to the previous version. Added doi and
reference to the published article also inside the pape
The luminosity function of the brightest galaxies in the IRAS survey
Results from a study of the far infrared properties of the brightest galaxies in the IRAS survey are described. There is a correlation between the infrared luminosity and the infrared to optical luminosity ratio and between the infrared luminosity and the far infrared color temperature in these galaxies. The infrared bright galaxies represent a significant component of extragalactic objects in the local universe, being comparable in space density to the Seyferts, optically identified starburst galaxies, and more numerous than quasars at the same bolometric luminosity. The far infrared luminosity in the local universe is approximately 25% of the starlight output in the same volume
Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory
We study the average separation between an elastic solid and a hard solid
with a nominal flat but randomly rough surface, as a function of the squeezing
pressure. We present experimental results for a silicon rubber (PDMS) block
with a flat surface squeezed against an asphalt road surface. The theory shows
that an effective repulse pressure act between the surfaces of the form p
proportional to exp(-u/u0), where u is the average separation between the
surfaces and u0 a constant of order the root-mean-square roughness, in good
agreement with the experimental results.Comment: 6 pages, 10 figure
Velocity weakening and possibility of aftershocks in nanofriction experiments
We study the frictional behavior of small contacts as those realized in the
atomic force microscope and other experimental setups, in the framework of
generalized Prandtl-Tomlinson models. Particular attention is paid to
mechanisms that generate velocity weakening, namely a decreasing average
friction force with the relative sliding velocity.The mechanisms studied model
the possibility of viscous relaxation, or aging effects in the contact. It is
found that, in addition to producing velocity weakening, these mechanisms can
also produce aftershocks at sufficiently low sliding velocities. This provides
a remarkable analogy at the microscale, of friction properties at the
macroscale, where aftershocks and velocity weakening are two fundamental
features of seismic phenomena.Comment: 8 pages, 7 figure
Fluid flow at the interface between elastic solids with randomly rough surfaces
I study fluid flow at the interface between elastic solids with randomly
rough surfaces. I use the contact mechanics model of Persson to take into
account the elastic interaction between the solid walls and the Bruggeman
effective medium theory to account for the influence of the disorder on the
fluid flow. I calculate the flow tensor which determines the pressure flow
factor and, e.g., the leak-rate of static seals. I show how the perturbation
treatment of Tripp can be extended to arbitrary order in the ratio between the
root-mean-square roughness amplitude and the average interfacial surface
separation. I introduce a matrix D(Zeta), determined by the surface roughness
power spectrum, which can be used to describe the anisotropy of the surface at
any magnification Zeta. I present results for the asymmetry factor Gamma(Zeta)
(generalized Peklenik number) for grinded steel and sandblasted PMMA surfaces.Comment: 16 pages, 14 figure
Nitrogen hydrides in interstellar gas: Herschel/HIFI observations towards G10.6-0.4 (W31C)
The HIFI instrument on board the Herschel Space Observatory has been used to observe interstellar nitrogen hydrides along the sight-line towards
G10.6−0.4 in order to improve our understanding of the interstellar chemistry of nitrogen. We report observations of absorption in NH N = 1 ← 0,
J = 2 ← 1 and ortho-NH_2 1_(1,1) ← 0_(0,0). We also observed ortho-NH_3 1_0 ← 0_0, and 2_0 ← 1_0, para-NH_3 2_1 ← 1_1, and searched unsuccessfully for
NH^+. All detections show emission and absorption associated directly with the hot-core source itself as well as absorption by foreground material
over a wide range of velocities. All spectra show similar, non-saturated, absorption features, which we attribute to diffuse molecular gas. Total
column densities over the velocity range 11−54 km s^(−1) are estimated. The similar profiles suggest fairly uniform abundances relative to hydrogen,
approximately 6 × 10^(−9), 3 × 10^(−9), and 3 × 10^(−9) for NH, NH_2, and NH_3, respectively. These abundances are discussed with reference to models of
gas-phase and surface chemistry
Political institutions and debt crises
This paper shows that political institutions matter in explaining defaults on external and domestic debt obligations. We explore a large number of political and macroeconomic variables using a non-parametric technique to predict safety from default. The advantage of this technique is that it is able to identify patterns in the data that are not captured in standard probit analysis. We find that political factors matter, and do so in different ways for democratic and non-democratic regimes, and for domestic and external debt. In democracies, a parliamentary system or sufficient checks and balances almost guarantee the absence of default on external debt when economic fundamentals or liquidity are sufficiently strong. In dictatorships, high stability and tenure play a similar role for default on domestic debt
Transverse thermal depinning and nonlinear sliding friction of an adsorbed monolayer
We study the response of an adsorbed monolayer under a driving force as a
model of sliding friction phenomena between two crystalline surfaces with a
boundary lubrication layer. Using Langevin-dynamics simulation, we determine
the nonlinear response in the direction transverse to a high symmetry direction
along which the layer is already sliding. We find that below a finite
transition temperature, there exist a critical depinning force and hysteresis
effects in the transverse response in the dynamical state when the adlayer is
sliding smoothly along the longitudinal direction.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Scanning tunneling microscopy and spectroscopy of sodium-chloride overlayers on the stepped Cu(311) surface: Experimental and theoretical study
The physical properties of ultrathin NaCl overlayers on the stepped Cu(311)
surface have been characterized using scanning tunneling microscopy (STM) and
spectroscopy, and density functional calculations. Simulations of STM images
and differential conductance spectrum were based on the Tersoff-Hamann
approximation for tunneling with corrections for the modified tunneling barrier
at larger voltages and calculated Kohn-Sham states. Characteristic features
observed in the STM images can be directly related to calculated electronic and
geometric properties of the overlayers. The measured apparent barrier heights
for the mono-, bi-, and trilayers of NaCl and the corresponding
adsorption-induced changes in the work function, as obtained from the distance
dependence of the tunneling current, are well reproduced by and understood from
the calculated results. The measurements revealed a large reduction of the
tunneling conductance in a wide voltage region, resembling a band gap. However,
the simulated spectrum showed that only the onset at positive sample voltages
may be viewed as a valence band edge, whereas the onset at negative voltages is
caused by the drastic effect of the electric field from the tip on the
tunneling barrier
Missing physics in stick-slip dynamics of a model for peeling of an adhesive tape
It is now known that the equations of motion for the contact point during
peeling of an adhesive tape mounted on a roll introduced earlier are singular
and do not support dynamical jumps across the two stable branches of the peel
force function. By including the kinetic energy of the tape in the Lagrangian,
we derive equations of motion that support stick-slip jumps as a natural
consequence of the inherent dynamics. In the low mass limit, these equations
reproduce solutions obtained using a differential-algebraic algorithm
introduced for the earlier equations. Our analysis also shows that mass of the
ribbon has a strong influence on the nature of the dynamics.Comment: Accepted for publication in Phys. Rev. E (Rapid Communication
- …