5,000 research outputs found

    Regional Indexes of Activity: Combining the Old with the New

    Get PDF
    This paper proposes a framework to construct indexes of activity which links two strands of the index literature – the traditional business cycle analysis and the latent variable approach. To illustrate the method, we apply the framework to Australian regional data, namely to two resource-rich and two service-based states. The results reveal differences in the evolution and drivers of economic activity across the four states. We also demonstrate the value of the Index in a broader context by using a structural vector autoregression (SVAR) approach to analyse the effects of shocks from the US and from China. This Index-SVAR approach facilitates a richer analysis because the unique feature of the index method proposed here allows impulse responses to be traced back to the components.Regional economic activity, coincident indicators, dynamic latent factor model

    Fantastic Behavior of High-TC Superconductor Junctions: Tunable Superconductivity

    Full text link
    Carrier injection performed in oxygen-deficient YBa2Cu3O7(YBCO) hetero-structure junctions exhibited tunable resistance that was entirely different with behaviors of semiconductor devices. Tunable superconductivity in YBCO junctions, increasing over 20 K in transition temperature, has achieved by using electric processes. To our knowledge, this is the first observation that intrinsic property of high TC superconductors superconductivity can be adjusted as tunable functional parameters of devices. The fantastic phenomenon caused by carrier injection was discussed based on a proposed charge carrier self-trapping model and BCS theory.Comment: 5 pages, 4 figure

    Quantum Group as Semi-infinite Cohomology

    Full text link
    We obtain the quantum group SLq(2)SL_q(2) as semi-infinite cohomology of the Virasoro algebra with values in a tensor product of two braided vertex operator algebras with complementary central charges c+cˉ=26c+\bar{c}=26. Each braided VOA is constructed from the free Fock space realization of the Virasoro algebra with an additional q-deformed harmonic oscillator degree of freedom. The braided VOA structure arises from the theory of local systems over configuration spaces and it yields an associative algebra structure on the cohomology. We explicitly provide the four cohomology classes that serve as the generators of SLq(2)SL_q(2) and verify their relations. We also discuss the possible extensions of our construction and its connection to the Liouville model and minimal string theory.Comment: 50 pages, 7 figures, minor revisions, typos corrected, Communications in Mathematical Physics, in pres

    Heat flux operator, current conservation and the formal Fourier's law

    Full text link
    By revisiting previous definitions of the heat current operator, we show that one can define a heat current operator that satisfies the continuity equation for a general Hamiltonian in one dimension. This expression is useful for studying electronic, phononic and photonic energy flow in linear systems and in hybrid structures. The definition allows us to deduce the necessary conditions that result in current conservation for general-statistics systems. The discrete form of the Fourier's Law of heat conduction naturally emerges in the present definition

    Exact dynamics of interacting qubits in a thermal environment: Results beyond the weak coupling limit

    Full text link
    We demonstrate an exact mapping of a class of models of two interacting qubits in thermal reservoirs to two separate spin-bath problems. Based on this mapping, exact numerical simulations of the qubits dynamics can be performed, beyond the weak system-bath coupling limit. Given the time evolution of the system, we study, in a numerically exact way, the dynamics of entanglement between pair of qubits immersed in boson thermal baths, showing a rich phenomenology, including an intermediate oscillatory behavior, the entanglement sudden birth, sudden death, and revival. We find that stationary entanglement develops between the qubits due to their coupling to a thermal environment, unlike the isolated qubits case in which the entanglement oscillates. We also show that the occurrence of entanglement sudden death in this model depends on the portion of the zero and double excitation states in the subsystem initial state. In the long-time limit, analytic expressions are presented at weak system-bath coupling, for a range of relevant qubit parameters
    • …
    corecore